Results for 'computational complexity'

1000+ found
Order:
  1.  41
    On the computational complexity of ethics: moral tractability for minds and machines.Jakob Stenseke - 2024 - Artificial Intelligence Review 57 (105):90.
    Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Cognitive and Computational Complexity: Considerations from Mathematical Problem Solving.Markus Pantsar - 2019 - Erkenntnis 86 (4):961-997.
    Following Marr’s famous three-level distinction between explanations in cognitive science, it is often accepted that focus on modeling cognitive tasks should be on the computational level rather than the algorithmic level. When it comes to mathematical problem solving, this approach suggests that the complexity of the task of solving a problem can be characterized by the computational complexity of that problem. In this paper, I argue that human cognizers use heuristic and didactic tools and thus engage (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  3. Computational complexity in the philosophy of mind: unconventional methods to solve the problem of logical omniscience.Safal Aryal - manuscript
    The philosophy of mind is traditionally concerned with the study of mental processes, language, the representation of knowledge and the relation of the mind shares with the body; computational complexity theory is related to the classification of computationally solvable problems (be it via execution time, storage requirements, etc...). While there are well-established links between computer science in general & the philosophy of mind, many possible solutions to traditional problems in the philosophy of mind have not yet been analyzed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Epistemic virtues, metavirtues, and computational complexity.Adam Morton - 2004 - Noûs 38 (3):481–502.
    I argue that considerations about computational complexity show that all finite agents need characteristics like those that have been called epistemic virtues. The necessity of these virtues follows in part from the nonexistence of shortcuts, or efficient ways of finding shortcuts, to cognitively expensive routines. It follows that agents must possess the capacities – metavirtues –of developing in advance the cognitive virtues they will need when time and memory are at a premium.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  5. Strict Finitism's Unrequited Love for Computational Complexity.Noel Arteche - manuscript
    As a philosophy of mathematics, strict finitism has been traditionally concerned with the notion of feasibility, defended mostly by appealing to the physicality of mathematical practice. This has led the strict finitists to influence and be influenced by the field of computational complexity theory, under the widely held belief that this branch of mathematics is concerned with the study of what is “feasible in practice”. In this paper, I survey these ideas and contend that, contrary to popular belief, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2020 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  7. Computational entrepreneurship: from economic complexities to interdisciplinary research.Quan-Hoang Vuong - 2019 - Problems and Perspectives in Management 17 (1):117-129.
    The development of technology is unbelievably rapid. From limited local networks to high speed Internet, from crude computing machines to powerful semi-conductors, the world had changed drastically compared to just a few decades ago. In the constantly renewing process of adapting to such an unnaturally high-entropy setting, innovations as well as entirely new concepts, were often born. In the business world, one such phenomenon was the creation of a new type of entrepreneurship. This paper proposes a new academic discipline of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. Transparency in Complex Computational Systems.Kathleen A. Creel - 2020 - Philosophy of Science 87 (4):568-589.
    Scientists depend on complex computational systems that are often ineliminably opaque, to the detriment of our ability to give scientific explanations and detect artifacts. Some philosophers have s...
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  9. Complexity Biology-based Information Structures can explain Subjectivity, Objective Reduction of Wave Packets, and Non-Computability.Alex Hankey - 2014 - Cosmos and History 10 (1):237-250.
    Background: how mind functions is subject to continuing scientific discussion. A simplistic approach says that, since no convincing way has been found to model subjective experience, mind cannot exist. A second holds that, since mind cannot be described by classical physics, it must be described by quantum physics. Another perspective concerns mind's hypothesized ability to interact with the world of quanta: it should be responsible for reduction of quantum wave packets; physics producing 'Objective Reduction' is postulated to form the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Causality, computing, and complexity.Russ Abbott - 2015
    I discuss two categories of causal relationships: primitive causal interactions of the sort characterized by Phil Dowe and the more general manipulable causal relationships as defined by James Woodward. All primitive causal interactions are manipulable causal relationships, but there are manipulable causal relationships that are not primitive causal interactions. I’ll call the latter constructed causal relationships, and I’ll argue that constructed causal relationships serve as a foundation for both computing and complex systems. -/- Perhaps even more interesting are autonomous causal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. G-Complexity, Quantum Computation and Anticipatory Processes.Mihai Nadin - 2014 - Computer Communication and Collaboration 2 (1):16-34.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. From Silico to Vitro: Computational Models of Complex Biological Systems Reveal Real-World Emergent Phenomena.Orly Stettiner - 2016 - In Vincent C. Müller (ed.), Computing and philosophy: Selected papers from IACAP 2014. Cham: Springer. pp. 133-147.
    Computer simulations constitute a significant scientific tool for promoting scientific understanding of natural phenomena and dynamic processes. Substantial leaps in computational force and software engineering methodologies now allow the design and development of large-scale biological models, which – when combined with advanced graphics tools – may produce realistic biological scenarios, that reveal new scientific explanations and knowledge about real life phenomena. A state-of-the-art simulation system termed Reactive Animation (RA) will serve as a study case to examine the contemporary philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Lightning in a Bottle: Complexity, Chaos, and Computation in Climate Science.Jon Lawhead - 2014 - Dissertation, Columbia University
    Climatology is a paradigmatic complex systems science. Understanding the global climate involves tackling problems in physics, chemistry, economics, and many other disciplines. I argue that complex systems like the global climate are characterized by certain dynamical features that explain how those systems change over time. A complex system's dynamics are shaped by the interaction of many different components operating at many different temporal and spatial scales. Examining the multidisciplinary and holistic methods of climatology can help us better understand the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Complexity of Judgment Aggregation.Ulle Endriss, Umberto Grandi & Daniele Porello - 2012 - Journal of Artificial Intelligence Research 45:481--514.
    We analyse the computational complexity of three problems in judgment aggregation: (1) computing a collective judgment from a profile of individual judgments (the winner determination problem); (2) deciding whether a given agent can influence the outcome of a judgment aggregation procedure in her favour by reporting insincere judgments (the strategic manipulation problem); and (3) deciding whether a given judgment aggregation scenario is guaranteed to result in a logically consistent outcome, independently from what the judgments supplied by the individuals (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  15. Agent-Based Computational Economics: A Constructive Approach to Economic Theory.Leigh Tesfatsion - 2006 - In Leigh Tesfatsion & Kenneth L. Judd (eds.), Handbook of Computational Economics, Volume 2: Agent-Based Computational Economics. Amsterdam, The Netherlands: Elsevier.
    Economies are complicated systems encompassing micro behaviors, interaction patterns, and global regularities. Whether partial or general in scope, studies of economic systems must consider how to handle difficult real-world aspects such as asymmetric information, imperfect competition, strategic interaction, collective learning, and the possibility of multiple equilibria. Recent advances in analytical and computational tools are permitting new approaches to the quantitative study of these aspects. One such approach is Agent-based Computational Economics (ACE), the computational study of economic processes (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  16. Complexity and the Evolution of Consciousness.Walter Veit - 2023 - Biological Theory 18 (3):175-190.
    This article introduces and defends the “pathological complexity thesis” as a hypothesis about the evolutionary origins of minimal consciousness, or sentience, that connects the study of animal consciousness closely with work in behavioral ecology and evolutionary biology. I argue that consciousness is an adaptive solution to a design problem that led to the extinction of complex multicellular animal life following the Avalon explosion and that was subsequently solved during the Cambrian explosion. This is the economic trade-off problem of having (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  17. Computing and philosophy: Selected papers from IACAP 2014.Vincent C. Müller (ed.) - 2016 - Cham: Springer.
    This volume offers very selected papers from the 2014 conference of the “International Association for Computing and Philosophy” (IACAP) - a conference tradition of 28 years. - - - Table of Contents - 0 Vincent C. Müller: - Editorial - 1) Philosophy of computing - 1 Çem Bozsahin: - What is a computational constraint? - 2 Joe Dewhurst: - Computing Mechanisms and Autopoietic Systems - 3 Vincenzo Fano, Pierluigi Graziani, Roberto Macrelli and Gino Tarozzi: - Are Gandy Machines really (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.
    Computational modeling should play a central role in philosophy. In this introduction to our topical collection, we propose a small topology of computational modeling in philosophy in general, and show how the various contributions to our topical collection fit into this overall picture. On this basis, we describe some of the ways in which computational models from other disciplines have found their way into philosophy, and how the principles one found here still underlie current trends in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. On Computable Numbers, Non-Universality, and the Genuine Power of Parallelism.Nancy Salay & Selim Akl - 2015 - International Journal of Unconventional Computing 11 (3-4):283-297.
    We present a simple example that disproves the universality principle. Unlike previous counter-examples to computational universality, it does not rely on extraneous phenomena, such as the availability of input variables that are time varying, computational complexity that changes with time or order of execution, physical variables that interact with each other, uncertain deadlines, or mathematical conditions among the variables that must be obeyed throughout the computation. In the most basic case of the new example, all that is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  22. Computable bi-embeddable categoricity.Luca San Mauro, Nikolay Bazhenov, Ekaterina Fokina & Dino Rossegger - 2018 - Algebra and Logic 5 (57):392-396.
    We study the algorithmic complexity of isomorphic embeddings between computable structures.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Languages, machines, and classical computation.Luis M. Augusto - 2021 - London, UK: College Publications.
    3rd ed, 2021. A circumscription of the classical theory of computation building up from the Chomsky hierarchy. With the usual topics in formal language and automata theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Integrating Computer Vision Algorithms and Ontologies for Spectator Crowd Behavior Analysis.Davide Conigliaro, Celine Hudelot, Roberta Ferrario & Daniele Porello - 2017 - In Vittorio Murino, Marco Cristani, Shishir Shah & Silvio Savarese (eds.), Group and Crowd Behavior for Computer Vision, 1st Edition. pp. 297-319.
    In this paper, building on these previous works, we propose to go deeper into the understanding of crowd behavior by proposing an approach which integrates ontologi- cal models of crowd behavior and dedicated computer vision algorithms, with the aim of recognizing some targeted complex events happening in the playground from the observation of the spectator crowd behavior. In order to do that, we first propose an ontology encoding available knowledge on spectator crowd behavior, built as a spe- cialization of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. European Computing and Philosophy.Gordana Dodig-Crnkovic - 2009 - The Reasoner 3 (9):18-19.
    European Computing and Philosophy conference, 2–4 July Barcelona The Seventh ECAP (European Computing and Philosophy) conference was organized by Jordi Vallverdu at Autonomous University of Barcelona. The conference started with the IACAP (The International Association for CAP) presidential address by Luciano Floridi, focusing on mechanisms of knowledge production in informational networks. The first keynote delivered by Klaus Mainzer made a frame for the rest of the conference, by elucidating the fundamental role of complexity of informational structures that can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Info-computational Constructivism and Cognition.G. Dodig-Crnkovic - 2014 - Constructivist Foundations 9 (2):223-231.
    Context: At present, we lack a common understanding of both the process of cognition in living organisms and the construction of knowledge in embodied, embedded cognizing agents in general, including future artifactual cognitive agents under development, such as cognitive robots and softbots. Purpose: This paper aims to show how the info-computational approach (IC) can reinforce constructivist ideas about the nature of cognition and knowledge and, conversely, how constructivist insights (such as that the process of cognition is the process of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Load Balancing of Tasks on Cloud Computing Using Time Complexity of Proposed Algorithm.V. Smrithi & B. K. Tiwari - 2018 - International Journal of Scientific Research and Engineering Trends 4 (6).
    Cloud Computing is a developing field and lean toward by numerous one at current yet it's rage is part more rely upon its execution which thusly is excessively rely upon the powerful booking algorithm and load adjusting . In this paper we address this issue and propose an algorithm for private cloud which has high throughput and for open cloud which address the issue of condition awareness likewise with execution. To enhance the throughput in private cloud SJF is utilized for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Epistemic issues in computational reproducibility: software as the elephant in the room.Alexandre Hocquet & Frédéric Wieber - 2021 - European Journal for Philosophy of Science 11 (2):1-20.
    Computational reproducibility possesses its own dynamics and narratives of crisis. Alongside the difficulties of computing as an ubiquitous yet complex scientific activity, computational reproducibility suffers from a naive expectancy of total reproducibility and a moral imperative to embrace the principles of free software as a non-negotiable epistemic virtue. We argue that the epistemic issues at stake in actual practices of computational reproducibility are best unveiled by focusing on software as a pivotal concept, one that is surprisingly often (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Complexity Perspectives on Language, Communication and Society.Albert Bastardas-Boada & Àngels Massip-Bonet (eds.) - 2013 - Berlin: Springer.
    The “language-communication-society” triangle defies traditional scientific approaches. Rather, it is a phenomenon that calls for an integration of complex, transdisciplinary perspectives, if we are to make any progress in understanding how it works. The highly diverse agents in play are not merely cognitive and/or cultural, but also emotional and behavioural in their specificity. Indeed, the effort may require building a theoretical and methodological body of knowledge that can effectively convey the characteristic properties of phenomena in human terms. New complexity (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  30. Computation on Information, Meaning and Representations. An Evolutionary Approach (World Scientific 2011).Christophe Menant - 2011 - In Dodig-Crnkovic, Gordana & Mark Burgin (eds.), Information and Computation. World Scientific. pp. 255-286.
    Understanding computation as “a process of the dynamic change of information” brings to look at the different types of computation and information. Computation of information does not exist alone by itself but is to be considered as part of a system that uses it for some given purpose. Information can be meaningless like a thunderstorm noise, it can be meaningful like an alert signal, or like the representation of a desired food. A thunderstorm noise participates to the generation of meaningful (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  31. Computational capacity of pyramidal neurons in the cerebral cortex.Danko D. Georgiev, Stefan K. Kolev, Eliahu Cohen & James F. Glazebrook - 2020 - Brain Research 1748:147069.
    The electric activities of cortical pyramidal neurons are supported by structurally stable, morphologically complex axo-dendritic trees. Anatomical differences between axons and dendrites in regard to their length or caliber reflect the underlying functional specializations, for input or output of neural information, respectively. For a proper assessment of the computational capacity of pyramidal neurons, we have analyzed an extensive dataset of three-dimensional digital reconstructions from the NeuroMorphoOrg database, and quantified basic dendritic or axonal morphometric measures in different regions and layers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Complex Systems Approach to the Hard Problem of Consciousness.Sahana Rajan - manuscript
    Consciousness has been the bone of contention for philosophers throughout centuries. Indian philosophy largely adopted lived experience as the starting point for its explorations of consciousness. For this reason, from the very beginning, experience was an integral way of grasping consciousness, whose validity as a tool was considered self-evident. Thus, in Indian philosophy, the question was not to move from the brain to mind but to understand experience of an individual and how such an experience is determined through mental structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Infinitely Complex Machines.Eric Steinhart - 2007 - In Intelligent Computing Everywhere. Springer. pp. 25-43.
    Infinite machines (IMs) can do supertasks. A supertask is an infinite series of operations done in some finite time. Whether or not our universe contains any IMs, they are worthy of study as upper bounds on finite machines. We introduce IMs and describe some of their physical and psychological aspects. An accelerating Turing machine (an ATM) is a Turing machine that performs every next operation twice as fast. It can carry out infinitely many operations in finite time. Many ATMs can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Tractability and the computational mind.Rineke Verbrugge & Jakub Szymanik - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 339-353.
    We overview logical and computational explanations of the notion of tractability as applied in cognitive science. We start by introducing the basics of mathematical theories of complexity: computability theory, computational complexity theory, and descriptive complexity theory. Computational philosophy of mind often identifies mental algorithms with computable functions. However, with the development of programming practice it has become apparent that for some computable problems finding effective algorithms is hardly possible. Some problems need too much (...) resource, e.g., time or memory, to be practically computable. Computational complexity theory is concerned with the amount of resources required for the execution of algorithms and, hence, the inherent difficulty of computational problems. An important goal of computational complexity theory is to categorize computational problems via complexity classes, and in particular, to identify efficiently solvable problems and draw a line between tractability and intractability. -/- We survey how complexity can be used to study computational plausibility of cognitive theories. We especially emphasize methodological and mathematical assumptions behind applying complexity theory in cognitive science. We pay special attention to the examples of applying logical and computational complexity toolbox in different domains of cognitive science. We focus mostly on theoretical and experimental research in psycholinguistics and social cognition. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Curious objects: How visual complexity guides attention and engagement.Zekun Sun & Chaz Firestone - 2021 - Cognitive Science: A Multidisciplinary Journal 45 (4):e12933.
    Some things look more complex than others. For example, a crenulate and richly organized leaf may seem more complex than a plain stone. What is the nature of this experience—and why do we have it in the first place? Here, we explore how object complexity serves as an efficiently extracted visual signal that the object merits further exploration. We algorithmically generated a library of geometric shapes and determined their complexity by computing the cumulative surprisal of their internal skeletons—essentially (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. Mixed computation: grammar up and down the Chomsky Hierarchy.Diego Gabriel Krivochen - 2021 - Evolutionary Linguistic Theory 2 (3):215-244.
    Proof-theoretic models of grammar are based on the view that an explicit characterization of a language comes in the form of the recursive enumeration of strings in that language. That recur-sive enumeration is carried out by a procedure which strongly generates a set of structural de-scriptions Σ and weakly generates a set of strings S; a grammar is thus a function that pairs an element of Σ with elements of S. Structural descriptions are obtained by means of Context-Free phrase structure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Cloud Computing and Big Data for Oil and Gas Industry Application in China.Yang Zhifeng, Feng Xuehui, Han Fei, Yuan Qi, Cao Zhen & Zhang Yidan - 2019 - Journal of Computers 1.
    The oil and gas industry is a complex data-driven industry with compute-intensive, data-intensive and business-intensive features. Cloud computing and big data have a broad application prospect in the oil and gas industry. This research aims to highlight the cloud computing and big data issues and challenges from the informatization in oil and gas industry. In this paper, the distributed cloud storage architecture and its applications for seismic data of oil and gas industry are focused on first. Then,cloud desktop for oil (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  60
    Irreversibility and Complexity.Lapin Yair - manuscript
    Complexity is a relatively new field of study that is still heavily influenced by philosophy. However, with the advent of modern computing, it has become easier to conduct thorough investigations of complex systems using computational simulations. Despite significant progress, there remain certain characteristics of complex systems that are difficult to comprehend. To better understand these features, information can be applied using simple models of complex systems. The concepts of Shannon's information theory, Kolgomorov complexity, and logical depth are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Eye-contact and complex dynamic systems: an hypothesis on autism's direct cause and a clinical study addressing prevention.Maxson J. McDowell - manuscript
    (This version was submitted to Behavioral and Brain Science. A revised version was published by Biological Theory) Estimates of autism’s incidence increased 5-10 fold in ten years, an increase which cannot be genetic. Though many mutations are associated with autism, no mutation seems directly to cause autism. We need to find the direct cause. Complexity science provides a new paradigm - confirmed in biology by extensive hard data. Both the body and the personality are complex dynamic systems which spontaneously (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Computer-Aided Argument Mapping as a Tool for Teaching Critical Thinking.W. Martin Davies - 2014 - International Journal of Learning and Media 4 (3-4):79-84.
    As individuals we often face complex issues about which we must weigh evidence and come to conclusions. Corporations also have to make decisions on the basis of strong and compelling arguments. Legal practitioners, compelled by arguments for or against a proposition and underpinned by the weight of evidence, are often required to make judgments that affect the lives of others. Medical doctors face similar decisions. Governments make purchasing decisions—for example, for expensive military equipment—or decisions in the areas of public or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. A computational model of affects.Mika Turkia - 2009 - In D. Dietrich, G. Fodor, G. Zucker & D. Bruckner (eds.), Simulating the mind: A technical neuropsychoanalytical approach. pp. 277-289.
    Emotions and feelings (i.e. affects) are a central feature of human behavior. Due to complexity and interdisciplinarity of affective phenomena, attempts to define them have often been unsatisfactory. This article provides a simple logical structure, in which affective concepts can be defined. The set of affects defined is similar to the set of emotions covered in the OCC model, but the model presented in this article is fully computationally defined, whereas the OCC model depends on undefined concepts. Following Matthis, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. What does a Computer Simulation prove? The case of plant modeling at CIRAD.Franck Varenne - 2001 - In N. Giambiasi & C. Frydman (eds.), Simulation in industry - ESS 2001, Proc. of the 13th European Simulation Symposium. Society for Computer Simulation (SCS).
    The credibility of digital computer simulations has always been a problem. Today, through the debate on verification and validation, it has become a key issue. I will review the existing theses on that question. I will show that, due to the role of epistemological beliefs in science, no general agreement can be found on this matter. Hence, the complexity of the construction of sciences must be acknowledged. I illustrate these claims with a recent historical example. Finally I temperate this (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  43. COMPUTATIONAL TREATMENT FOR LIFE SCIENCE.Igor F. Mikhailov - 2021 - Vestnik Tomskogo Gosudarstvennogo Universiteta. Filosofiya, Sotsiologiya, Politologiya 1 (61):38-46.
    According to some critics, if biology is a kind of reverse engineering for the nature, it is quite poorly prepared for the task. Thus, the issue is more likely with its ontology. Multiple hypotheses and conjectures found in papers on methodological issues claim that living systems should be viewed as complex networks of signal-transmitting paths, both neural and non-neural, that feature modularity and feedback circuits and are prone to emergent properties and increasing complexity. If so, we are on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Layers of Models in Computer Simulations.Thomas Boyer-Kassem - 2014 - International Studies in the Philosophy of Science 28 (4):417-436.
    I discuss here the definition of computer simulations, and more specifically the views of Humphreys, who considers that an object is simulated when a computer provides a solution to a computational model, which in turn represents the object of interest. I argue that Humphreys's concepts are not able to analyse fully successfully a case of contemporary simulation in physics, which is more complex than the examples considered so far in the philosophical literature. I therefore modify Humphreys's definition of simulation. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  45. Ontological Complexity and Human Culture.D. J. Saab & F. Fonseca - forthcoming - In R. Hagengruber (ed.), Proceedings of Philosophy's Relevance in Information Science.
    Ontologies are being used by information scientists in order to facilitate the sharing of meaningful information. However, computational ontologies are problematic in that they often decontextualize information. The semantic content of information is dependent upon the context in which it exists and the experience through which it emerges. For true semantic interoperability to occur among diverse information systems, within or across domains, information must remain contextualized. In order to bring more context to computational ontologies, we introduce culture as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Simple or complex bodies? Trade-offs in exploiting body morphology for control.Matej Hoffmann & Vincent C. Müller - 2017 - In Gordana Dodig-Crnkovic & Raffaela Giovagnoli (eds.), Representation of Reality: Humans, Other Living Organism and Intelligent Machines. Heidelberg: Springer. pp. 335-345.
    Engineers fine-tune the design of robot bodies for control purposes, however, a methodology or set of tools is largely absent, and optimization of morphology (shape, material properties of robot bodies, etc.) is lagging behind the development of controllers. This has become even more prominent with the advent of compliant, deformable or ”soft” bodies. These carry substantial potential regarding their exploitation for control—sometimes referred to as ”morphological computation”. In this article, we briefly review different notions of computation by physical systems and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Complex Organisation and Fundamental Physics.Brian D. Josephson - 2018 - Streaming Media Service, Cambridge University.
    The file on this site provides the slides for a lecture given in Hangzhou in May 2018, and the lecture itself is available at the URL beginning 'sms' in the set of links provided in connection with this item. -/- It is commonly assumed that regular physics underpins biology. Here it is proposed, in a synthesis of ideas by various authors, that in reality structures and mechanisms of a biological character underpin the world studied by physicists, in principle supplying detail (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Analysis of minimal complex systems and complex problem solving require different forms of causal cognition.Joachim Funke - 2014 - Frontiers in Psychology 5.
    In the last 20 years, a stream of research emerged under the label of „complex problem solving“ (CPS). This research was intended to describe the way people deal with complex, dynamic, and intransparent situations. Complex computer-simulated scenarios were as stimulus material in psychological experiments. This line of research lead to subtle insights into the way how people deal with complexity and uncertainty. Besides these knowledge-rich, realistic, intransparent, complex, dynamic scenarios with many variables, a second line of research used more (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  49. Modeling the interaction of computer errors by four-valued contaminating logics.Roberto Ciuni, Thomas Macaulay Ferguson & Damian Szmuc - 2019 - In Rosalie Iemhoff, Michael Moortgat & Ruy de Queiroz (eds.), Logic, Language, Information, and Computation. Berlín, Alemania: pp. 119-139.
    Logics based on weak Kleene algebra (WKA) and related structures have been recently proposed as a tool for reasoning about flaws in computer programs. The key element of this proposal is the presence, in WKA and related structures, of a non-classical truth-value that is “contaminating” in the sense that whenever the value is assigned to a formula ϕ, any complex formula in which ϕ appears is assigned that value as well. Under such interpretations, the contaminating states represent occurrences of a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Contents, vehicles, and complex data analysis in neuroscience.Daniel C. Burnston - 2020 - Synthese 199 (1-2):1617-1639.
    The notion of representation in neuroscience has largely been predicated on localizing the components of computational processes that explain cognitive function. On this view, which I call “algorithmic homuncularism,” individual, spatially and temporally distinct parts of the brain serve as vehicles for distinct contents, and the causal relationships between them implement the transformations specified by an algorithm. This view has a widespread influence in philosophy and cognitive neuroscience, and has recently been ably articulated and defended by Shea. Still, I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 1000