Results for 'particle physics'

1000+ found
Order:
  1. Unobservability of short-lived particles: ground for skepticism about observational claims in elementary particle physics.Marcoen J. T. F. Cabbolet - manuscript
    The physics literature contains many claims that elementary particles have been observed: such observational claims are, of course, important for the development of existential knowledge. Regarding claimed observations of short-lived unstable particles in particular, the use of the word 'observation' is based on the convention in physics that the observation of a short-lived unstable particle can be claimed when its predicted decay products have been observed with a significance of 5 sigma. This paper, however, shows that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Supernatural Resurrection and its Incompatibility with the Standard Model of Particle Physics: Second Rejoinder to Stephen T. Davis.Robert Greg Cavin & Carlos A. Colombetti - 2021 - Socio-Historical Examination of Religion and Ministry 3 (2):253-277.
    In response to Stephen Davis’s criticism of our previous essay, we revisit and defend our arguments that the Resurrection hypothesis is logically incompatible with the Standard Model of particle physics—and thus is maximally implausible—and that it cannot explain the sensory experiences of the Risen Jesus attributed to various witnesses in the New Testament—and thus has low explanatory power. We also review Davis’s reply, noting that he evades our arguments, misstates their conclusions, and distracts the reader with irrelevancies regarding, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Art, politics, and particle physics, with one eye on the past: Steven Weinberg: Third Thoughts. Cambridge, MA: The Belknap Press of Harvard University Press, 2018, 240pp, $25.95HB. [REVIEW]Karen Crowther - 2019 - Metascience 28 (2):331-334.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Identity in physics: Statistics and the (non-)individuality of quantum particles.Matteo Morganti - 2010 - In H. De Regt, S. Hartmann & S.: Okasha (eds.), EPSA Philosophy of Science: Amsterdam 2009. Springer.
    This paper discusses the issue of the identity and individuality (or lack thereof) of quantum mechanical particles. It first reconstructs, on the basis of the extant literature, a general argument in favour of the conclusion that such particles are not individual objects. Then, it critically assesses each one of the argument’s premises. The upshot is that, in fact, there is no compelling reason for believing that quantum particles are not individual objects.
    Download  
     
    Export citation  
     
    Bookmark  
  5. Manifestly Covariant Lagrangians, Classical Particles with Spin, and the Origins of Gauge Invariance.Jacob Barandes - manuscript
    In this paper, we review a general technique for converting the standard Lagrangian description of a classical system into a formulation that puts time on an equal footing with the system's degrees of freedom. We show how the resulting framework anticipates key features of special relativity, including the signature of the Minkowski metric tensor and the special role played by theories that are invariant under a generalized notion of Lorentz transformations. We then use this technique to revisit a classification of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Gauge Invariance for Classical Massless Particles with Spin.Jacob A. Barandes - 2021 - Foundations of Physics 51 (1):1-14.
    Wigner's quantum-mechanical classification of particle-types in terms of irreducible representations of the Poincaré group has a classical analogue, which we extend in this paper. We study the compactness properties of the resulting phase spaces at fixed energy, and show that in order for a classical massless particle to be physically sensible, its phase space must feature a classical-particle counterpart of electromagnetic gauge invariance. By examining the connection between massless and massive particles in the massless limit, we also (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. Fundamental Physics as the General Solution to a Maximization Problem on the Shannon Entropy of All Measurements.Alexandre Harvey Tremblay - manuscript
    We present a novel approach to quantum theory construction that involves solving a maximization problem on the Shannon entropy of all possible measurements of a system relative to its initial preparation. By constraining the maximization problem with a phase that vanishes under measurements, we obtain quantum mechanics (vanishing U(1)-valued phase), relativistic quantum mechanics (vanishing Spin^c(3,1)-valued phase), and quantum gravity (also a vanishing Spin^c(3,1)-valued phase, but with a non-vanishing dilation part). The first two cases are equivalent to established theory, whereas the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The Elementary Particles of Quantum Fields.Gregg Jaeger - 2021 - Entropy 11 (23):1416.
    The elementary particles of relativistic quantum field theory are not simple field quanta, as has long been assumed. Rather, they supplement quantum fields, on which they depend but to which they are not reducible, as shown here with particles defined instead as a unified collection of properties that appear in both physical symmetry group representations and field propagators. This notion of particle provides consistency between the practice of particle physics and its basis in quantum field theory.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Localizability and Elementary Particles.Gregg Jaeger - 2020 - Journal of Physics: Conference Series 1638:012010.
    The well-definedness of particles of any kind depends on the limits, approximations, or other conditions that may or may not be involved, for example, whether there are interactions and whether ostensibly related energy is localizable. In particular, their theoretical status differs between its non-relativistic and relativistic versions: One can properly define interacting elementary particles in single-system non-relativistic quantum mechanics, at least in the case of non-zero mass systems; by contrast, one is severely challenged to define even these properly in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Particle Creation as the Quantum Condition for Probabilistic Events to Occur.Nicholas Maxwell - 1994 - Physics Letters A 187 (2 May 1994):351-355.
    A new version of quantum theory is proposed, according to which probabilistic events occur whenever new statioinary or bound states are created as a result of inelastic collisions. The new theory recovers the experimental success of orthodox quantum theory, but differs form the orthodox theory for as yet unperformed experiments.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  11. What is an elementary particle?Erwin Schrödinger - 1950 - Annual Report of the Board of Regents of The Smithsonian Institution:183-196.
    Schrödinger discusses what an elementary particle is. This essay originally appeared in the journal Endeavour.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  12. Neutrino Physics in Historical Context.Quentin Rodriguez - 2019 - In Michel Cribier, Jacques Dumarchez & Daniel Vignaud (eds.), History of the Neutrino 1930–2018. Paris, France: pp. 503-508.
    This contribution aims to give an overview of the historical context of neutrino physics. I will present the strong social trends that shaped physics and the way physicists worked, along the 20th century. First, we will see the background of the birth of nuclear physics in the interwar period. Then, we will examine the deep implications the Second World War had, to conclude with the specificities of post-war years for nuclear and particle physics.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Instead of Particles and Fields: A Micro Realistic Quantum "Smearon" Theory.Nicholas Maxwell - 1982 - Foundatioins of Physics 12 (6):607-631.
    A fully micro realistic, propensity version of quantum theory is proposed, according to which fundamental physical entities - neither particles nor fields - have physical characteristics which determine probabilistically how they interact with one another . The version of quantum "smearon" theory proposed here does not modify the equations of orthodox quantum theory: rather, it gives a radically new interpretation to these equations. It is argued that there are strong general reasons for preferring quantum "smearon" theory to orthodox quantum theory; (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  14. Quantum Physics: An overview of a weird world: A guide to the 21st century quantum revolution.Marco Masi - 2019 - Indy Edition.
    This second volume is a continuation of the first volume’s 20th century conceptual foundations of quantum physics extending its view to the principles and research fields of the 21st century. A summary of the standard concepts, from modern advanced experimental tests of 'quantum ontology’ to the interpretations of quantum mechanics, the standard model of particle physics, and the mainstream quantum gravity theories. A state-of-the-art treatise that reports on the recent developments in quantum computing, classical and quantum information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. No Paradox in Wave–Particle Duality.Andrew Knight - 2020 - Foundations of Physics 50 (11):1723-1727.
    The assertion that an experiment by Afshar et al. demonstrates violation of Bohr’s Principle of Complementarity is based on the faulty assumption that which-way information in a double-slit interference experiment can be retroactively determined from a future measurement.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Outlines of Rutherford’s α-Particles Scattering Experiment.Arjun Dahal & Nikita Parajuli - 2018 - Journal of St.Xavier's Physics Council.
    Rutherford’s α-particles scattering experiment was one of the milestone for the physics community as it provided an insight to an atom thus discarding the previously prevailed Thomson’s model. Through this article we shall examine the theoretical formulation of Rutherford’s experiment and how it helped to shape the modern physics.
    Download  
     
    Export citation  
     
    Bookmark  
  17. A New Foundation for Physics.Jim Bourassa & David Thomson - 2006 - Infinite Energy Magazine (69):34.
    Modern physics describes the mechanics of the Universe. We have discovered a new foundation for physics, which explains the components of the Universe with precision and depth. We quantify the existence of Aether, subatomic particles, and the force laws. Some aspects of the theory derive from the Standard Model, but much is unique. A key discovery from this new foundation is a mathematically correct Unified Force Theory. Other fundamental discoveries follow, including the origin of the fine structure constant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one.Farzad Didehvar - manuscript
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. The Physics and Metaphysics of Primitive Stuff.Michael Esfeld, Dustin Lazarovici, Vincent Lam & Mario Hubert - 2017 - British Journal for the Philosophy of Science 68 (1):133-61.
    The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identity-based Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  20. Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the omega minus particle.Michele Ginammi - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:20-27.
    According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and discontinuous.
    Download  
     
    Export citation  
     
    Bookmark  
  22. ​​Our Fundamental Physical Space: An Essay on the Metaphysics of the Wave Function.Eddy Keming Chen - 2017 - Journal of Philosophy 114 (7):333-365.
    The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the deeper topological (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  23. Tropes and Physics.Matteo Morganti - 2009 - Grazer Philosophische Studien 78 (1):185--205.
    Th is paper looks at quantum theory and the Standard Model of elementary particles with a view to suggesting a detailed empirical implementation of trope ontology in harmony with our best physics.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  24. UnQuantum Woolf: The Many Intellectual Contexts of To the Lighthouse's Metaphorical Wave-Particle Binary.Xavier Cousin - 2022 - Dissertation, Durham University
    This thesis is a sceptical investigation into the notion that the metaphorical wave-particle binary of Virginia Woolf's To the Lighthouse is related to quantum physics. Indeed, the field of literature and science has employed conceptual similarities as the main means of connecting quantum concepts to novels, however, this has led to a host of scholarly difficulties, prompting the need for a re-examination of analogical linkages. Woolf is the model candidate for such a re-examination, given her historical and philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make you able (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Triple-Aspect Monism and the Ontology of Quantum Particles.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (4):451.
    An analysis of the physical implications of abstractness reveals the reality of three interconnected modes of existence: abstract, virtual and concrete, corresponding in physics to information, energy and matter. This triple-aspect monism clarifies the ontological status of subatomic quantum particles. It also provides a non-spooky solution to the weirdness of quantum physics and a new outlook for the mind-body problem. The ontological implications are profound for both physics and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. A search for new physics in high-mass ditau events in the ATLAS detector.Ryan Reece - 2013 - Dissertation, University of Pennsylvania
    This thesis is a work of experimental physics, a search for new physics with the ATLAS experiment. I post this thesis on the PhilArchive because it includes a pedagogical summary of quantum mechanics and the standard model of particle physics in the combination of chapters 1-2 and appendix A. This was my attempt at the end of my PhD of giving a bird's eye view of the standard model, with a thorough bibliography of the publication trail (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The physics and metaphysics of Tychistic Bohmian Mechanics.Patrick Duerr & Alexander Ehmann - 2021 - Studies in History and Philosophy of Science Part A 90:168-183.
    The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Why Interpret Quantum Physics?Edward MacKinnon - 2016 - Open Journal of Philosophy 6 (1):86-102.
    This article probes the question of what interpretations of quantum mechanics actually accomplish. In other domains, which are briefly considered, interpretations serve to make alien systematizations intelligible to us. This often involves clarifying the status of their implicit ontology. A survey of interpretations of non-relativistic quantum mechanics supports the evaluation that these interpretations make a contribution to philosophy, but not to physics. Interpretations of quantum field theory are polarized by the divergence between the Lagrangian field theory that led to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. How research programs come apart: The example of supersymmetry and the disunity of physics.Lucas Gautheron & Elisa Omodei - 2023 - Quantitative Science Studies 4 (3):671–699.
    According to Peter Galison, the coordination of different “subcultures” within a scientific field happens through local exchanges within “trading zones.” In his view, the workability of such trading zones is not guaranteed, and science is not necessarily driven towards further integration. In this paper, we develop and apply quantitative methods (using semantic, authorship, and citation data from scientific literature), inspired by Galison’s framework, to the case of the disunity of high-energy physics. We give prominence to supersymmetry, a concept that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Inherent Properties and Statistics with Individual Particles in Quantum Mechanics.Matteo Morganti - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):223-231.
    This paper puts forward the hypothesis that the distinctive features of quantum statistics are exclusively determined by the nature of the properties it describes. In particular, all statistically relevant properties of identical quantum particles in many-particle systems are conjectured to be irreducible, ‘inherent’ properties only belonging to the whole system. This allows one to explain quantum statistics without endorsing the ‘Received View’ that particles are non-individuals, or postulating that quantum systems obey peculiar probability distributions, or assuming that there are (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  32. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly established (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Time-energy uncertainty does not create particles.Bryan W. Roberts & Jeremy Butterfield - 2020 - Journal of Physics 1638:012005.
    In this contribution in honour of Paul Busch, we criticise the claims of many expositions that the time-energy uncertainty principle allows both a violation of energy conservation and particle creation, provided that this happens for a sufficiently short time. But we agree that there are grains of truth in these claims: which we make precise and justify using perturbation theory.
    Download  
     
    Export citation  
     
    Bookmark  
  35. On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis.Victor Christianto, Volodymyr Krasnoholovets & Florentin Smarandache - manuscript
    In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model starting from classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Persistence and Nonpersistence as Complementary Models of Identical Quantum Particles.Philip Goyal - 2019 - New Journal of Physics 21.
    According to our understanding of the everyday physical world, observable phenomena are underpinned by persistent objects that can be reidentified across time by observation of their distinctive properties. This understanding is reflected in classical mechanics, which posits that matter consists of persistent, reidentifiable particles. However, the mathematical symmetrization procedures used to describe identical particles within the quantum formalism have led to the widespread belief that identical quantum particles lack either persistence or reidentifiability. However, it has proved difficult to reconcile these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Photon Physics and the Classical Ontology.Paul Klevgard - manuscript
    We think of kinetic energy (KE) as a quantity possessed by rest mass in motion. But somehow electromagnetic (EM) radiation transports KE across space without any rest mass. In addition, a single photon passing through a double slit diffracts into multiple paths in space without affecting its KE. This is hard to explain. Quantum theories that confront the double slit problem do not address these two issues directly. The ontology of radiation KE is examined which leads to some new ideas (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Explanations and candidate explanations in physics.Martin King - 2020 - European Journal for Philosophy of Science 10 (1):1-17.
    There has been a growing trend to include non-causal models in accounts of scientific explanation. A worry addressed in this paper is that without a higher threshold for explanation there are no tools for distinguishing between models that provide genuine explanations and those that provide merely potential explanations. To remedy this, a condition is introduced that extends a veridicality requirement to models that are empirically underdetermined, highly-idealised, or otherwise non-causal. This condition is applied to models of electroweak symmetry breaking beyond (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. The Forgetful World: A defence of presentism in light of modern physics.Patrick Dawson - 2022 - Dissertation, University of Sydney
    The aim of this thesis is to defend a presentist metaphysics. I respond to a series of objections against presentism, including some that draw on our best physics. I also explore ways in which presentism might play an active role in interpreting and constraining physical theory, beyond merely being consistent with it. -/- A unifying theme of this thesis is that I advocate for a reduction of presentism to its bare essentials. Within the proposed ontology, reality is three-dimensional. Time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Leibnizian relationalism for general relativistic physics.Antonio Vassallo & Michael Esfeld - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics (C):101-107.
    An ontology of Leibnizian relationalism, consisting in distance relations among sparse matter points and their change only, is well recognized as a serious option in the context of classical mechanics. In this paper, we investigate how this ontology fares when it comes to general relativistic physics. Using a Humean strategy, we regard the gravitational field as a means to represent the overall change in the distance relations among point particles in a way that achieves the best combination of being (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  41. Complementary Inferences on Theoretical Physics and Mathematics.Mesut Kavak - manuscript
    I have been working for a long time about basic laws which direct existence, and some mathematical problems which are waited for a solution. I can count myself lucky, that I could make some important inferences during this time, and I published them in a few papers partially as some propositions. This work aimed to explain and discuss these inferences all together by relating them one another by some extra additions, corrections and explanations being physical phenomena are prior. There are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. The Relatedness of YiJing and Quantum Physics.David Leong - manuscript
    The work in this paper is presented with this spirit to draw the relatedness of Yijing to quantum physics and seek to express the continuity between the ancient sages and contemporary scientific thought. Yijing is abstract philosophical and can provide an excellent method for generating, structuring and exploring quantum fields relevant to our present level of scientific knowledge. Further, the view of reality that science emphasizes as a seamless, continuous field is the same as Yijing where ‘self’ as (...) is deeply integrated into the basic fabric of reality through their consciousness. It is this consciousness that interacts and co-relates to that field of interconnectedness. (Schöter, 2011) The wholeness of realities, in Yijing, are layer of fields interacting, changing, extending into possibilities and uncertainties. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Mass Time, Mass System, Electrical Charge Time (Infinities in Physics).Farzad Didehvar - manuscript
    Here, we continue the discussion in [1], about infinities in Physics. Our goal is to create a Mathematical system to give a probable explanation for infinities in QED, based on Fuzzy time. This Mathematical system should be sufficiently satisfactory and Simple. In general, our goal of these series, is to provide more reasons to consider time as a fuzzy concept in a way that is explained in [4], [5], [6].
    Download  
     
    Export citation  
     
    Bookmark  
  44. On a new mathematical framework for fundamental theoretical physics.Robert E. Var - 1975 - Foundations of Physics 5 (3):407-431.
    It is shown by means of general principles and specific examples that, contrary to a long-standing misconception, the modern mathematical physics of compressible fluid dynamics provides a generally consistent and efficient language for describing many seemingly fundamental physical phenomena. It is shown to be appropriate for describing electric and gravitational force fields, the quantized structure of charged elementary particles, the speed of light propagation, relativistic phenomena, the inertia of matter, the expansion of the universe, and the physical nature of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. From Yijing to Copenhagen Interpretation of Quantum Physics.David Leong - manuscript
    In the quest and search for a physical theory of everything from the macroscopic large body matter to the microscopic elementary particles, with strange and weird concepts springing from quantum physics discovery, irreconcilable positions and inconvenient facts complicated physics – from Newtonian physics to quantum science, the question is- how do we close the gap? Indeed, there is a scientific and mathematical fireworks when the issue of quantum uncertainties and entanglements cannot be explained with classical physics. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Ontology of Haag’s Local Quantum Physics.Gregg Jaeger - 2024 - Entropy 26 (1):33.
    The ontology of Local Quantum Physics, Rudolf Haag’s framework for relativistic quantum theory, is reviewed and discussed. It is one of spatiotemporally localized events and unlocalized causal intermediaries, including the elementary particles, which come progressively into existence in accordance with a fundamental arrow of time. Haag’s conception of quantum theory is distinguished from others in which events are also central, especially those of Niels Bohr and John Wheeler, with which it has been compared.
    Download  
     
    Export citation  
     
    Bookmark  
  47. The Fundamental Principles of Existence and the Origin of Physical Laws.Attila Grandpierre - 2002 - Ultimate Reality and Meaning 25 (2):127-147.
    Our concept of the universe and the material world is foundational for our thinking and our moral lives. In an earlier contribution to the URAM project I presented what I called 'the ultimate organizational principle' of the universe. In that article (Grandpierre 2000, pp. 12-35) I took as an adversary the wide-spread system of thinking which I called 'materialism'. According to those who espouse this way of thinking, the universe consists of inanimate units or sets of material such as atoms (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Kuznetsov V. From studying theoretical physics to philosophical modeling scientific theories: Under influence of Pavel Kopnin and his school.Volodymyr Kuznetsov - 2017 - ФІЛОСОФСЬКІ ДІАЛОГИ’2016 ІСТОРІЯ ТА СУЧАСНІСТЬ У НАУКОВИХ РОЗМИСЛАХ ІНСТИТУТУ ФІЛОСОФІЇ 11:62-92.
    The paper explicates the stages of the author’s philosophical evolution in the light of Kopnin’s ideas and heritage. Starting from Kopnin’s understanding of dialectical materialism, the author has stated that category transformations of physics has opened from conceptualization of immutability to mutability and then to interaction, evolvement and emergence. He has connected the problem of physical cognition universals with an elaboration of the specific system of tools and methods of identifying, individuating and distinguishing objects from a scientific theory domain. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49.  57
    Microbits: A New Unified Physics.Nadeem Haque & M. Muslim - 2021 - Toronto: Optagon Publications.
    Opening a revolutionary new era in the unification of physics, by a breakthrough understanding of space, time, particles, and cosmology… For more than a century now, physicists have been attempting to unify the whole of physics and in so doing, gain a greater understanding of our cosmos. In Microbits: A New Unified Physics, scientific philosophers M. Muslim and Nadeem Haque, describe in detail, a compelling new view of physics that unites both the micro and the macro (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Bottoms up: The Standard Model Effective Field Theory from a model perspective.Philip Bechtle, Cristin Chall, Martin King, Michael Krämer, Peter Mättig & Michael Stöltzner - 2022 - Studies in History and Philosophy of Science Part A 92:129-143.
    Experiments in particle physics have hitherto failed to produce any significant evidence for the many explicit models of physics beyond the Standard Model (BSM) that had been proposed over the past decades. As a result, physicists have increasingly turned to model-independent strategies as tools in searching for a wide range of possible BSM effects. In this paper, we describe the Standard Model Effective Field Theory (SM-EFT) and analyse it in the context of the philosophical discussions about models, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 1000