View topic on PhilPapers for more information
Related categories

9 found
Order:
More results on PhilPapers
  1. added 2019-06-05
    Philosophy of Logic. Hilary Putnam.John Corcoran - 1973 - Philosophy of Science 40 (1):131-133.
    Putnam, Hilary FPhilosophy of logic. Harper Essays in Philosophy. Harper Torchbooks, No. TB 1544. Harper & Row, Publishers, New York-London, 1971. v+76 pp. The author of this book has made highly regarded contributions to mathematics, to philosophy of logic and to philosophy of science, and in this book he brings his ideas in these three areas to bear on the traditional philosophic problem of materialism versus (objective) idealism. The book assumes that contemporary science (mathematical and physical) is largely correct as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. added 2018-01-10
    Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. added 2016-05-19
    INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. added 2014-07-07
    GOL: A General Ontological Language.Wolfgang Degen, Barbara Heller, Heinrich Herre & Barry Smith - 2001 - In Barry Smith & Chris Welty (eds.), Formal Ontology in Information Systems (FOIS). Acm Press.
    Every domain-specific ontology must use as a framework some upper-level ontology which describes the most general, domain-independent categories of reality. In the present paper we sketch a new type of upper-level ontology, which is intended to be the basis of a knowledge modelling language GOL (for: 'General Ontological Language'). It turns out that the upper- level ontology underlying standard modelling languages such as KIF, F-Logic and CycL is restricted to the ontology of sets. Set theory has considerable mathematical power and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. added 2012-10-18
    To Be or to Be Not, That is the Dilemma.Juan José Luetich - 2012 - Identification Transactions of The Luventicus Academy (ISSN 1666-7581) 1 (1):4.
    A set is precisely defined. A given element either belongs or not to a set. However, since all of the elements being considered belong to the universe, if the element does not belong to the set, it belongs to its complement, that is, what remains after all of the elements from the set are removed from the universe.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. added 2012-01-12
    The Construction of Transfinite Equivalence Algorithms.Han Geurdes - manuscript
    Context: Consistency of mathematical constructions in numerical analysis and the application of computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To show that a computer in general and a numerical analysis in particular can add its own peculiarities to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a prediction in numerical (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. added 2011-07-17
    Foundations Without Sets.George Bealer - 1981 - American Philosophical Quarterly 18 (4):347 - 353.
    The dominant school of logic, semantics, and the foundation of mathematics construct its theories within the framework of set theory. There are three strategies by means of which a member of this school might attempt to justify his ontology of sets. One strategy is to show that sets are already included in the naturalistic part of our everyday ontology. If they are, then one may assume that whatever justifies the everyday ontology justifies the ontology of sets. Another strategy is to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. added 2011-01-23
    Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  9. added 2010-09-02
    Traditional Logic and the Early History of Sets, 1854-1908.J. Ferreiros - 1996 - Archive for History of Exact Sciences 50:5-71.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations