Related

Contents
13 found
Order:
  1. (1 other version)Universism and extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  2. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can be generalized (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. The Ontological Import of Adding Proper Classes.Alfredo Roque Freire & Rodrigo de Alvarenga Freire - 2019 - Manuscrito 42 (2):85-112.
    In this article, we analyse the ontological import of adding classes to set theories. We assume that this increment is well represented by going from ZF system to NBG. We thus consider the standard techniques of reducing one system to the other. Novak proved that from a model of ZF we can build a model of NBG (and vice versa), while Shoenfield have shown that from a proof in NBG of a set-sentence we can generate a proof in ZF of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  7. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. La dinamica delle teorie scientifiche. Strutturalismo ed interpretazione logico-formale dell’epistemologia di Kuhn, with a preface of C. Ulises Moulines.Tommaso Perrone - 2012 - Franco Angeli.
    Philosophy of science in the 20th century is to be considered as mostly characterized by a fundamentally systematic heuristic attitude, which looks to mathematics, and more generally to the philosophy of mathematics, for a genuinely and epistemologically legitimate form of knowledge. Rooted in this assumption, the book provides a formal reconsidering of the dynamics of scientific theories, especially in the field of the physical sciences, and offers a significant contribution to current epistemological investigations regarding the validity of using formal (especially: (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. (6 other versions)Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to bе (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. (6 other versions)Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. That's (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. (1 other version)Conceptions of infinity and set in Lorenzen’s operationist system.Carolin Antos - 2004 - In S. Rahman (ed.), Logic, Epistemology, and the Unity of Science. Dordrecht: Kluwer Academic Publishers.
    In the late 1940s and early 1950s Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as the precursor to the more well-known dialogical logic and one could assumed that the same philosophical motivations were present in both works. However we want to show that this is not always the case. In particular, we claim, that Lorenzen’s well-known rejection of the actual infinite as stated in Lorenzen (1957) was not a major motivation (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. (1 other version)Iterative Conceptions of Set.Neil Barton - manuscript
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark