View topic on PhilPapers for more information
Related categories

40 found
Order:
More results on PhilPapers
Material to categorize
  1. Canonical Maps.Jean-Pierre Marquis - 2018 - In Elaine Landry (ed.), Categories for the Working Philosophers. Oxford, UK: pp. 90-112.
    Categorical foundations and set-theoretical foundations are sometimes presented as alternative foundational schemes. So far, the literature has mostly focused on the weaknesses of the categorical foundations. We want here to concentrate on what we take to be one of its strengths: the explicit identification of so-called canonical maps and their role in mathematics. Canonical maps play a central role in contemporary mathematics and although some are easily defined by set-theoretical tools, they all appear systematically in a categorical framework. The key (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. A Naturalistic Justification of the Generic Multiverse with a Core.Matteo de Ceglie - 2018 - In Proceedings of the 41st Internation Wittgenstein Symposium. 2880 Kirchberg am Wechsel, Austria: pp. 34-36.
    In this paper, I argue that a naturalist approach in philosophy of mathematics justifies a pluralist conception of set theory. For the pluralist, there is not a Single Universe, but there is rather a Multiverse, composed by a plurality of universes generated by various set theories. In order to justify a pluralistic approach to sets, I apply the two naturalistic principles developed by Penelope Maddy (cfr. Maddy (1997)), UNIFY and MAXIMIZE, and analyze through them the potential of the set theoretic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Note on the Significance of the New Logic.Frederique Janssen-Lauret - 2018 - The Reasoner 6 (12):47-48.
    Brief note explaining the content, importance, and historical context of my joint translation of Quine's The Significance of the New Logic with my single-authored historical-philosophical essay 'Willard Van Orman Quine's Philosophical Development in the 1930s and 1940s'.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. The Barber, Russell's Paradox, Catch-22, God, Contradiction, and More.Laurence Goldstein - 2004 - In Graham Priest, J. C. Beall & Bradley Armour-Garb (eds.), The Law of Non-Contradiction. Clarendon Press. pp. 295--313.
    outrageous remarks about contradictions. Perhaps the most striking remark he makes is that they are not false. This claim first appears in his early notebooks (Wittgenstein 1960, p.108). In the Tractatus, Wittgenstein argued that contradictions (like tautologies) are not statements (Sätze) and hence are not false (or true). This is a consequence of his theory that genuine statements are pictures.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. I Think, Therefore I Exist; I Belong, Therefore I Am.Juan José Luetich - 2012 - Transactions of The Luventicus Academy (3):1-4.
    The actions of perceiving and grouping are the two that the human being carries out when thinking in entities different from himself. In this article “The Mirror Problem” and “The Peer Problem”, which correspond respectively to self-perception and the perception of others, are studied. By solving these two problems, the thinker arrives to the following conclusions: “I exist” and “I am”.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
Russell's Paradox
  1. Curry’s Paradox and Ω -Inconsistency.Andrew Bacon - 2013 - Studia Logica 101 (1):1-9.
    In recent years there has been a revitalised interest in non-classical solutions to the semantic paradoxes. In this paper I show that a number of logics are susceptible to a strengthened version of Curry's paradox. This can be adapted to provide a proof theoretic analysis of the omega-inconsistency in Lukasiewicz's continuum valued logic, allowing us to better evaluate which logics are suitable for a naïve truth theory. On this basis I identify two natural subsystems of Lukasiewicz logic which individually, but (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  2. Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Philosophy of Logic. Hilary Putnam.John Corcoran - 1973 - Philosophy of Science 40 (1):131-133.
    Putnam, Hilary FPhilosophy of logic. Harper Essays in Philosophy. Harper Torchbooks, No. TB 1544. Harper & Row, Publishers, New York-London, 1971. v+76 pp. The author of this book has made highly regarded contributions to mathematics, to philosophy of logic and to philosophy of science, and in this book he brings his ideas in these three areas to bear on the traditional philosophic problem of materialism versus (objective) idealism. The book assumes that contemporary science (mathematical and physical) is largely correct as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. To Reduce Nothingness Into a Reference by Falsity.Hazhir Roshangar - manuscript
    Assuming the absolute nothingness as the most basic object of thought, I present a way to refer to this object, by reducing it onto a primitive object that supersedes and comes right after the absolute nothingness. The new primitive object that is constructed can be regarded as a formal system that can generate some infinite variety of symbols. [The PDF here is outdated, for a recent draft please contact me.].
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. There is No Standard Model of ZFC.Jaykov Foukzon - 2018 - Journal of Global Research in Mathematical Archives 5 (1):33-50.
    Main results are:(i) Let M_st be standard model of ZFC. Then ~Con(ZFC+∃M_st), (ii) let k be an inaccessible cardinal then ~Con(ZFC+∃k),[10],11].
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Modal Set Theory.Christopher Menzel - forthcoming - In Otávio Bueno & Scott Shalkowski (eds.), The Routledge Handbook of Modality. London and New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Contradictions Inherent in Special Relativity: Space Varies.Kim Joosoak - manuscript
    Special relativity has changed the fundamental view on space and time since Einstein introduced it in 1905. It substitutes four dimensional spacetime for the absolute space and time of Newtonian mechanics. It is believed that the validities of Lorentz invariants are fully confirmed empirically for the last one hundred years and therefore its status are canonical underlying all physical principles. However, spacetime metric is a geometric approach on nature when we interpret the natural phenomenon. A geometric flaw on this will (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. The 1900 Turn in Bertrand Russell’s Logic, the Emergence of His Paradox, and the Way Out.Nikolay Milkov - 2017 - Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 7:29-50.
    Russell’s initial project in philosophy (1898) was to make mathematics rigorous reducing it to logic. Before August 1900, however, Russell’s logic was nothing but mereology. First, his acquaintance with Peano’s ideas in August 1900 led him to discard the part-whole logic and accept a kind of intensional predicate logic instead. Among other things, the predicate logic helped Russell embrace a technique of treating the paradox of infinite numbers with the help of a singular concept, which he called ‘denoting phrase’. Unfortunately, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Tiny Proper Classes.Laureano Luna - 2016 - The Reasoner 10 (10):83-83.
    We propose certain clases that seem unable to form a completed totality though they are very small, finite, in fact. We suggest that the existence of such clases lends support to an interpretation of the existence of proper clases in terms of availability, not size.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. 1983 Review in Mathematical Reviews 83e:03005 Of: Cocchiarella, Nino “The Development of the Theory of Logical Types and the Notion of a Logical Subject in Russell's Early Philosophy: Bertrand Russell's Early Philosophy, Part I”. Synthese 45 (1980), No. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Review of Mark Sainsbury, Paradoxes. [REVIEW]Vincent C. Müller - 1994 - European Review of Philosophy 1:182-184.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. Paradoxien.Mark Sainsbury & Vincent C. Müller - 1993 - Reclam.
    Translation of Mark Sainsbury: Paradoxes (Cambridge University Press 1988).
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  14. The Importance of Developing a Foundation for Naive Category Theory.Marcoen J. T. F. Cabbolet - 2015 - Thought: A Journal of Philosophy 4 (4):237-242.
    Recently Feferman has outlined a program for the development of a foundation for naive category theory. While Ernst has shown that the resulting axiomatic system is still inconsistent, the purpose of this note is to show that nevertheless some foundation has to be developed before naive category theory can replace axiomatic set theory as a foundational theory for mathematics. It is argued that in naive category theory currently a ‘cookbook recipe’ is used for constructing categories, and it is explicitly shown (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. On the Self-Predicative Universals of Category Theory.David Ellerman - manuscript
    This paper shows how the universals of category theory in mathematics provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato's Theory of Forms as well as for the idea of a "concrete universal" in Hegel and similar ideas of paradigmatic exemplars in ordinary thought. The paper also shows how the always-self-predicative universals of category theory provide the "opposite bookend" to the never-self-predicative universals of iterative set theory and thus that the paradoxes arose from having (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Class-Theoretic Paradoxes and the Neo-Kantian Discarding of Intuition.Chris Onof - unknown
    Book synopsis: This volume is a collection of papers selected from those presented at the 5th International Conference on Philosophy sponsored by the Athens Institute for Research and Education (ATINER), held in Athens, Greece at the St. George Lycabettus Hotel, June 2010. Held annually, this conference provides a singular opportunity for philosophers from all over the world to meet and share ideas with the aim of expanding our understanding of our discipline. Over the course of the conference, sixty papers were (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. The Cost of Discarding Intuition – Russell’s Paradox as Kantian Antinomy.Christian Onof - 2013 - In Margit Ruffing, Claudio La Rocca, Alfredo Ferrarin & Stefano Bacin (eds.), Kant Und Die Philosophie in Weltbürgerlicher Absicht: Akten des Xi. Kant-Kongresses 2010. De Gruyter. pp. 171-184.
    Book synopsis: Held every five years under the auspices of the Kant-Gesellschaft, the International Kant Congress is the world’s largest philosophy conference devoted to the work and legacy of a single thinker. The five-volume set Kant and Philosophy in a Cosmopolitan Sense contains the proceedings of the Eleventh International Kant Congress, which took place in Pisa in 2010. The proceedings consist of 25 plenary talks and 341 papers selected by a team of international referees from over 700 submissions. The contributions (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. The Barber, Russell's Paradox, Catch-22, God, Contradiction, and More.Laurence Goldstein - 2004 - In Graham Priest, J. C. Beall & Bradley Armour-Garb (eds.), The Law of Non-Contradiction. Clarendon Press. pp. 295--313.
    outrageous remarks about contradictions. Perhaps the most striking remark he makes is that they are not false. This claim first appears in his early notebooks (Wittgenstein 1960, p.108). In the Tractatus, Wittgenstein argued that contradictions (like tautologies) are not statements (Sätze) and hence are not false (or true). This is a consequence of his theory that genuine statements are pictures.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Unlimited Possibilities.Gonçalo Santos - 2011 - In Michal Peliš & Vít Punčochář (eds.), The Logica Yearbook. College Publications.
    I distinguish between a metaphysical and a logical reading of Generality Relativism. While the former denies the existence of an absolutely general domain, the latter denies the availability of such a domain. In this paper I argue for the logical thesis but remain neutral in what concerns metaphysics. To motivate Generality Relativism I defend a principle according to which a collection can always be understood as a set-like collection. I then consider a modal version of Generality Relativism and sketch how (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  20. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These ontological (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. Paraconsistency: Logic and Applications.Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.) - 2013 - Springer.
    A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  22. A Presentation Without an Example?Arnold Zuboff - 1992 - Analysis 52 (3):190 - 191.
    This article presents a paradox of inclusion, like Russell’s paradox but in a natural language.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
Set Theory and Logicism
  1. Extensionalizing Intensional Second-Order Logic.Jonathan Payne - 2015 - Notre Dame Journal of Formal Logic 56 (1):243-261.
    Neo-Fregean approaches to set theory, following Frege, have it that sets are the extensions of concepts, where concepts are the values of second-order variables. The idea is that, given a second-order entity $X$, there may be an object $\varepsilon X$, which is the extension of X. Other writers have also claimed a similar relationship between second-order logic and set theory, where sets arise from pluralities. This paper considers two interpretations of second-order logic—as being either extensional or intensional—and whether either is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. To Be or to Be Not, That is the Dilemma.Juan José Luetich - 2012 - Identification Transactions of The Luventicus Academy (ISSN 1666-7581) 1 (1):4.
    A set is precisely defined. A given element either belongs or not to a set. However, since all of the elements being considered belong to the universe, if the element does not belong to the set, it belongs to its complement, that is, what remains after all of the elements from the set are removed from the universe.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
Set-Theoretic Constructions
  1. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. La Dinamica Delle Teorie Scientifiche. Strutturalismo Ed Interpretazione Logico-Formale Dell’Epistemologia di Kuhn, with a Preface of C. Ulises Moulines.Tommaso Perrone - 2012 - Franco Angeli.
    Philosophy of science in the 20th century is to be considered as mostly characterized by a fundamentally systematic heuristic attitude, which looks to mathematics, and more generally to the philosophy of mathematics, for a genuinely and epistemologically legitimate form of knowledge. Rooted in this assumption, the book provides a formal reconsidering of the dynamics of scientific theories, especially in the field of the physical sciences, and offers a significant contribution to current epistemological investigations regarding the validity of using formal (especially: (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
Set Theory as a Foundation, Misc
  1. Philosophy of Logic. Hilary Putnam.John Corcoran - 1973 - Philosophy of Science 40 (1):131-133.
    Putnam, Hilary FPhilosophy of logic. Harper Essays in Philosophy. Harper Torchbooks, No. TB 1544. Harper & Row, Publishers, New York-London, 1971. v+76 pp. The author of this book has made highly regarded contributions to mathematics, to philosophy of logic and to philosophy of science, and in this book he brings his ideas in these three areas to bear on the traditional philosophic problem of materialism versus (objective) idealism. The book assumes that contemporary science (mathematical and physical) is largely correct as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. GOL: A General Ontological Language.Wolfgang Degen, Barbara Heller, Heinrich Herre & Barry Smith - 2001 - In Barry Smith & Chris Welty (eds.), Formal Ontology in Information Systems (FOIS). Acm Press.
    Every domain-specific ontology must use as a framework some upper-level ontology which describes the most general, domain-independent categories of reality. In the present paper we sketch a new type of upper-level ontology, which is intended to be the basis of a knowledge modelling language GOL (for: 'General Ontological Language'). It turns out that the upper- level ontology underlying standard modelling languages such as KIF, F-Logic and CycL is restricted to the ontology of sets. Set theory has considerable mathematical power and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. To Be or to Be Not, That is the Dilemma.Juan José Luetich - 2012 - Identification Transactions of The Luventicus Academy (ISSN 1666-7581) 1 (1):4.
    A set is precisely defined. A given element either belongs or not to a set. However, since all of the elements being considered belong to the universe, if the element does not belong to the set, it belongs to its complement, that is, what remains after all of the elements from the set are removed from the universe.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. The Construction of Transfinite Equivalence Algorithms.Han Geurdes - manuscript
    Context: Consistency of mathematical constructions in numerical analysis and the application of computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To show that a computer in general and a numerical analysis in particular can add its own peculiarities to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a prediction in numerical (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. Foundations Without Sets.George Bealer - 1981 - American Philosophical Quarterly 18 (4):347 - 353.
    The dominant school of logic, semantics, and the foundation of mathematics construct its theories within the framework of set theory. There are three strategies by means of which a member of this school might attempt to justify his ontology of sets. One strategy is to show that sets are already included in the naturalistic part of our everyday ontology. If they are, then one may assume that whatever justifies the everyday ontology justifies the ontology of sets. Another strategy is to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  9. Traditional Logic and the Early History of Sets, 1854-1908.J. Ferreiros - 1996 - Archive for History of Exact Sciences 50:5-71.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations