Switch to: References

Add citations

You must login to add citations.
  1. Exploring the Philosophy of Mathematics: Beyond Logicism and Platonism.Richard Startup - 2024 - Open Journal of Philosophy 14 (2):219-243.
    A perspective in the philosophy of mathematics is developed from a consideration of the strengths and limitations of both logicism and platonism, with an early focus on Frege’s work. Importantly, although many set-theoretic structures may be developed each of which offers limited isomorphism with the system of natural numbers, no one of them may be identified with it. Furthermore, the timeless, ever present nature of mathematical concepts and results itself offers direct access, in the face of a platonist account which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Las Imágenes como Herramientas Epistémicas.Axel Barceló - 2016 - Scientiae Studia 1 (14):45-63.
    El objetivo de este artículo es establecer algunas distinciones fundamentales para el estudio de las representaciones epistémicas, y en particular, de las representaciones epistémicas visuales. Para ello, presento tres distinciones estrechamente relacionadas: La primera es una distinción entre las restricciones impuestas a una herramienta por la tarea (que se busca nos ayude a realizar), y aquellas impuestas por nuestras características como usuarios. La segunda es una distinción entre la función estrecha de una representación (que no es sino representar) y su (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Thought Experiments: State of the Art.Michael T. Stuart, Yiftach Fehige & James Robert Brown - 2017 - In Michael T. Stuart, Yiftach Fehige & James Robert Brown (eds.), The Routledge Companion to Thought Experiments. London: Routledge. pp. 1-28.
    This is the introduction to the Routledge Companion to Thought Experiments.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Models and fiction.Roman Frigg - 2007 - Synthese 172 (2):251-268.
    Most scientific models are not physical objects, and this raises important questions. What sort of entity are models, what is truth in a model, and how do we learn about models? In this paper I argue that models share important aspects in common with literary fiction, and that therefore theories of fiction can be brought to bear on these questions. In particular, I argue that the pretence theory as developed by Walton (1990, Mimesis as make-believe: on the foundations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • The Formulation and Justification of Mathematical Definitions Illustrated By Deterministic Chaos.Charlotte Werndl - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 279-288.
    The general theme of this article is the actual practice of how definitions are justified and formulated in mathematics. The theoretical insights of this article are based on a case study of topological definitions of chaos. After introducing this case study, I identify the three kinds of justification which are important for topological definitions of chaos: natural-world-justification, condition-justification and redundancy-justification. To my knowledge, the latter two have not been identified before. I argue that these three kinds of justification are widespread (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • That We See That Some Diagrammatic Proofs Are Perfectly Rigorous.Jody Azzouni - 2013 - Philosophia Mathematica 21 (3):323-338.
    Mistaken reasons for thinking diagrammatic proofs aren't rigorous are explored. The main result is that a confusion between the contents of a proof procedure (what's expressed by the referential elements in a proof procedure) and the unarticulated mathematical aspects of a proof procedure (how that proof procedure is enabled) gives the impression that diagrammatic proofs are less rigorous than language proofs. An additional (and independent) factor is treating the impossibility of naturally generalizing a diagrammatic proof procedure as an indication of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Relationship of Derivations in Artificial Languages to Ordinary Rigorous Mathematical Proof.J. Azzouni - 2013 - Philosophia Mathematica 21 (2):247-254.
    The relationship is explored between formal derivations, which occur in artificial languages, and mathematical proof, which occurs in natural languages. The suggestion that ordinary mathematical proofs are abbreviations or sketches of formal derivations is presumed false. The alternative suggestion that the existence of appropriate derivations in formal logical languages is a norm for ordinary rigorous mathematical proof is explored and rejected.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The hardness of the iconic must: can Peirce’s existential graphs assist modal epistemology.Catherine Legg - 2012 - Philosophia Mathematica 20 (1):1-24.
    Charles Peirce's diagrammatic logic — the Existential Graphs — is presented as a tool for illuminating how we know necessity, in answer to Benacerraf's famous challenge that most ‘semantics for mathematics’ do not ‘fit an acceptable epistemology’. It is suggested that necessary reasoning is in essence a recognition that a certain structure has the particular structure that it has. This means that, contra Hume and his contemporary heirs, necessity is observable. One just needs to pay attention, not merely to individual (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Diagrams and proofs in analysis.Jessica Carter - 2010 - International Studies in the Philosophy of Science 24 (1):1 – 14.
    This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Criteria of identity and structuralist ontology.Hannes Leitgib & James Ladyman - 2008 - Philosophia Mathematica 16 (3):388-396.
    In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • The epistemological status of computer-assisted proofs.Mark McEvoy - 2008 - Philosophia Mathematica 16 (3):374-387.
    Several high-profile mathematical problems have been solved in recent decades by computer-assisted proofs. Some philosophers have argued that such proofs are a posteriori on the grounds that some such proofs are unsurveyable; that our warrant for accepting these proofs involves empirical claims about the reliability of computers; that there might be errors in the computer or program executing the proof; and that appeal to computer introduces into a proof an experimental element. I argue that none of these arguments withstands scrutiny, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Notions of Cause: Russell’s Thesis Revisited.Don Ross & David Spurrett - 2007 - British Journal for the Philosophy of Science 58 (1):45-76.
    We discuss Russell's 1913 essay arguing for the irrelevance of the idea of causation to science and its elimination from metaphysics as a precursor to contemporary philosophical naturalism. We show how Russell's application raises issues now receiving much attention in debates about the adequacy of such naturalism, in particular, problems related to the relationship between folk and scientific conceptual influences on metaphysics, and to the unification of a scientifically inspired worldview. In showing how to recover an approximation to Russell's conclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Non-deductive logic in mathematics.James Franklin - 1987 - British Journal for the Philosophy of Science 38 (1):1-18.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as Fermat's Last Theorem and the Riemann Hypothesis, have had to be considered in terms of the evidence for and against them. It is argued here that it is not adequate to describe the relation of evidence to hypothesis as `subjective', `heuristic' or (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • A graph model for probabilities of nested conditionals.Anna Wójtowicz & Krzysztof Wójtowicz - 2022 - Linguistics and Philosophy 45 (3):511-558.
    We define a model for computing probabilities of right-nested conditionals in terms of graphs representing Markov chains. This is an extension of the model for simple conditionals from Wójtowicz and Wójtowicz. The model makes it possible to give a formal yet simple description of different interpretations of right-nested conditionals and to compute their probabilities in a mathematically rigorous way. In this study we focus on the problem of the probabilities of conditionals; we do not discuss questions concerning logical and metalogical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbertian Structuralism and the Frege-Hilbert Controversy†.Fiona T. Doherty - 2019 - Philosophia Mathematica 27 (3):335-361.
    ABSTRACT This paper reveals David Hilbert’s position in the philosophy of mathematics, circa 1900, to be a form of non-eliminative structuralism, predating his formalism. I argue that Hilbert withstands the pressing objections put to him by Frege in the course of the Frege-Hilbert controversy in virtue of this early structuralist approach. To demonstrate that this historical position deserves contemporary attention I show that Hilbertian structuralism avoids a recent wave of objections against non-eliminative structuralists to the effect that they cannot distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The role of diagrams in mathematical arguments.David Sherry - 2008 - Foundations of Science 14 (1-2):59-74.
    Recent accounts of the role of diagrams in mathematical reasoning take a Platonic line, according to which the proof depends on the similarity between the perceived shape of the diagram and the shape of the abstract object. This approach is unable to explain proofs which share the same diagram in spite of drawing conclusions about different figures. Saccheri’s use of the bi-rectangular isosceles quadrilateral in Euclides Vindicatus provides three such proofs. By forsaking abstract objects it is possible to give a (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Rigour and Thought Experiments: Burgess and Norton.James Robert Brown - 2022 - Axiomathes 32 (1):7-28.
    This article discusses the important and influential views of John Burgess on the nature of mathematical rigour and John Norton on the nature of thought experiments. Their accounts turn out to be surprisingly similar in spite of different subject matters. Among other things both require a reconstruction of the initial proof or thought experiment in order to officially evaluate them, even though we almost never do this in practice. The views of each are plausible and seem to solve interesting problems. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Beauty in Proofs: Kant on Aesthetics in Mathematics.Angela Breitenbach - 2013 - European Journal of Philosophy 23 (4):955-977.
    It is a common thought that mathematics can be not only true but also beautiful, and many of the greatest mathematicians have attached central importance to the aesthetic merit of their theorems, proofs and theories. But how, exactly, should we conceive of the character of beauty in mathematics? In this paper I suggest that Kant's philosophy provides the resources for a compelling answer to this question. Focusing on §62 of the ‘Critique of Aesthetic Judgment’, I argue against the common view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Rule-following, explanation-transcendence, and private language.Cyrus Panjvani - 2008 - Mind 117 (466):303-328.
    I examine what I take to be an important consideration for the later Wittgenstein: the understanding of a rule does not exceed or transcend an understanding of explanations or instructions in the rule. I contend that this consideration plays a central role in the later Wittgenstein's views on rule-following. I first show that it serves as a key premiss in a sceptical argument concerning our ability to follow rules. I then argue that this consideration is vital to Wittgenstein's case against (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematicians’ Assessments of the Explanatory Value of Proofs.Juan Pablo Mejía Ramos, Tanya Evans, Colin Rittberg & Matthew Inglis - 2021 - Axiomathes 31 (5):575-599.
    The literature on mathematical explanation contains numerous examples of explanatory, and not so explanatory proofs. In this paper we report results of an empirical study aimed at investigating mathematicians’ notion of explanatoriness, and its relationship to accounts of mathematical explanation. Using a Comparative Judgement approach, we asked 38 mathematicians to assess the explanatory value of several proofs of the same proposition. We found an extremely high level of agreement among mathematicians, and some inconsistencies between their assessments and claims in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computers as a Source of A Posteriori Knowledge in Mathematics.Mikkel Willum Johansen & Morten Misfeldt - 2016 - International Studies in the Philosophy of Science 30 (2):111-127.
    Electronic computers form an integral part of modern mathematical practice. Several high-profile results have been proven with techniques where computer calculations form an essential part of the proof. In the traditional philosophical literature, such proofs have been taken to constitute a posteriori knowledge. However, this traditional stance has recently been challenged by Mark McEvoy, who claims that computer calculations can constitute a priori mathematical proofs, even in cases where the calculations made by the computer are too numerous to be surveyed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classical logic without bivalence.Tor Sandqvist - 2009 - Analysis 69 (2):211-218.
    Semantic justifications of the classical rules of logical inference typically make use of a notion of bivalent truth, understood as a property guaranteed to attach to a sentence or its negation regardless of the prospects for speakers to determine it as so doing. For want of a convincing alternative account of classical logic, some philosophers suspicious of such recognition-transcending bivalence have seen no choice but to declare classical deduction unwarranted and settle for a weaker system; intuitionistic logic in particular, buttressed (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Why proofs by mathematical induction are generally not explanatory.Marc Lange - 2009 - Analysis 69 (2):203-211.
    Philosophers who regard some mathematical proofs as explaining why theorems hold, and others as merely proving that they do hold, disagree sharply about the explanatory value of proofs by mathematical induction. I offer an argument that aims to resolve this conflict of intuitions without making any controversial presuppositions about what mathematical explanations would be.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Can Concepts Ground Apriori Knowledge? Peacocke’s Referential Turn and its Challenges.Nenad Miščević - 2008 - Acta Analytica 23 (3):233-256.
    The paper is a critical examination of Peacocke’s pioneering work on concepts as grounding the possibility of a priori knowledge. It focuses upon his more recent turn to reference and referential domain, and the two enlargements of the purely conceptual bases for apriority, namely appeal to conceptions and to direct referential sensitivity. I argue that the two are needed, but they produce more problem for the strategy as a whole than they solve. I conclude by suggesting that they point to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical Diagrams in Practice: An Evolutionary Account.Iulian D. Toader - 2002 - Logique Et Analyse 179:341-355.
    This paper analyzes some examples of diagrammatic proofs in elementary mathematics. It suggests that the cognitive features that allow us to understand such proofs are extensions of the cognitive features that allow us to navigate the physical world.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epistemological Import of Euclidean Diagrams.Daniele Molinini - 2016 - Kairos 16 (1):124-141.
    In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may have in empirical sciences, more specifically in physics. I shall claim that, although (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics and fiction II: Analogy.Robert Thomas - 2002 - Logique Et Analyse 45:185-228.
    The object of this paper is to study the analogy, drawn both positively and negatively, between mathematics and fiction. The analogy is more subtle and interesting than fictionalism, which was discussed in part I. Because analogy is not common coin among philosophers, this particular analogy has been discussed or mentioned for the most part just in terms of specific similarities that writers have noticed and thought worth mentioning without much attention's being paid to the larger picture. I intend with this (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Justifying definitions in mathematics—going beyond Lakatos.Charlotte Werndl - 2009 - Philosophia Mathematica 17 (3):313-340.
    This paper addresses the actual practice of justifying definitions in mathematics. First, I introduce the main account of this issue, namely Lakatos's proof-generated definitions. Based on a case study of definitions of randomness in ergodic theory, I identify three other common ways of justifying definitions: natural-world justification, condition justification, and redundancy justification. Also, I clarify the interrelationships between the different kinds of justification. Finally, I point out how Lakatos's ideas are limited: they fail to show how various kinds of justification (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • On the persuasiveness of visual arguments in mathematics.Matthew Inglis & Juan Pablo Mejía-Ramos - 2009 - Foundations of Science 14 (1-2):97-110.
    Two experiments are reported which investigate the factors that influence how persuaded mathematicians are by visual arguments. We demonstrate that if a visual argument is accompanied by a passage of text which describes the image, both research-active mathematicians and successful undergraduate mathematics students perceive it to be significantly more persuasive than if no text is given. We suggest that mathematicians’ epistemological concerns about supporting a claim using visual images are less prominent when the image is described in words. Finally we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What perception is doing, and what it is not doing, in mathematical reasoning.Dennis Lomas - 2002 - British Journal for the Philosophy of Science 53 (2):205-223.
    What is perception doing in mathematical reasoning? To address this question, I discuss the role of perception in geometric reasoning. Perception of the shape properties of concrete diagrams provides, I argue, a surrogate consciousness of the shape properties of the abstract geometric objects depicted in the diagrams. Some of what perception is not doing in mathematical reasoning is also discussed. I take issue with both Parsons and Maddy. Parsons claims that we perceive a certain type of abstract object. Maddy claims (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations