Switch to: References

Citations of:

The Free Will Theorem

Foundations of Physics 36 (10):1441-1473 (2006)

Add citations

You must login to add citations.
  1. Collapse theories.Giancarlo Ghirardi - 2008 - Stanford Encyclopedia of Philosophy.
    Quantum mechanics, with its revolutionary implications, has posed innumerable problems to philosophers of science. In particular, it has suggested reconsidering basic concepts such as the existence of a world that is, at least to some extent, independent of the observer, the possibility of getting reliable and objective knowledge about it, and the possibility of taking (under appropriate circumstances) certain properties to be objectively possessed by physical systems. It has also raised many others questions which are well known to those involved (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The GRW Flash Theory: A Relativistic Quantum Ontology of Matter in Space-Time?Michael Esfeld & Nicolas Gisin - 2014 - Philosophy of Science 81 (2):248-264.
    John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Can the world be shown to be indeterministic after all?Christian Wuthrich - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 365--389.
    This essay considers and evaluates recent results and arguments from classical chaotic systems theory and non-relativistic quantum mechanics that pertain to the question of whether our world is deterministic or indeterministic. While the classical results are inconclusive, quantum mechanics is often assumed to establish indeterminism insofar as the measurement process involves an ineliminable stochastic element, even though the dynamics between two measurements is considered fully deterministic. While this latter claim concerning the Schrödinger evolution must be qualified, the former fully depends (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Why anything rather than nothing? The answer of quantum mechanics.Vasil Penchev - 2019 - In Aleksandar Feodorov & Ivan Mladenov (eds.), Non/Cognate Approaches: Relation & Representation. "Парадигма". pp. 151-172.
    Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation is the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Metaphysics of science as naturalized metaphysics.Michael Esfeld - 2018 - In Anouk Barberousse, Denis Bonnay & Mikaël Cozic (eds.), The philosophy of science. A companion. Oxford, England: Oxford University Press. pp. 142-170.
    This chapter outlines a metaphysics of science in the sense of a naturalized metaphysics. It considers in the first place the interplay of physics and metaphysics in Newtonian mechanics, then goes into the issues for the metaphysics of time that relativity physics raises, shows that what one considers as the referent of quantum theory depends on metaphysical considerations and finally explains how the stance that one takes with respect to objective modality and laws of nature shapes the options that are (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An Operationalist Perspective on Setting Dependence.Ronnie Hermens - 2019 - Foundations of Physics 49 (3):260-282.
    A well known logical loophole for Bell’s theorem is that it relies on setting independence: the assumption that the state of a system is independent of the settings of a measurement apparatus probing the system. In this paper the implications of rejecting this assumption are studied from an operationalist perspective. To this end a generalization of the ontic models framework is proposed that allows setting dependence. It is shown that within this framework Bell’s theorem reduces to the conclusion that no-signaling (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Randomness? What Randomness?Klaas Landsman - 2020 - Foundations of Physics 50 (2):61-104.
    This is a review of the issue of randomness in quantum mechanics, with special emphasis on its ambiguity; for example, randomness has different antipodal relationships to determinism, computability, and compressibility. Following a philosophical discussion of randomness in general, I argue that deterministic interpretations of quantum mechanics are strictly speaking incompatible with the Born rule. I also stress the role of outliers, i.e. measurement outcomes that are not 1-random. Although these occur with low probability, their very existence implies that the no-signaling (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Comment on “The Free Will Theorem”.Roderich Tumulka - 2007 - Foundations of Physics 37 (2):186-197.
    In a recent paper Conway and Kochen, Found. Phys. 36, 2006, claim to have established that theories of the Ghirardi-Rimini-Weber (RW) type, i.e., of spontaneous wave function collapse, cannot be made relativistic. On the other hand, relativistic GRW-type theories have already been presented, in my recent paper, J. Stat. Phys. 125, 2006, and by Dowker and Henson, J. Stat. Phys. 115, 2004. Here, I elucidate why these are not excluded by the arguments of Conway and Kochen.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A conjecture concerning determinism, reduction, and measurement in quantum mechanics.Arthur Jabs - 2016 - Quantum Studies: Mathematics and Foundations 3 (4):279-292.
    Determinism is established in quantum mechanics by tracing the probabilities in the Born rules back to the absolute (overall) phase constants of the wave functions and recognizing these phase constants as pseudorandom numbers. The reduction process (collapse) is independent of measurement. It occurs when two wavepackets overlap in ordinary space and satisfy a certain criterion, which depends on the phase constants of both wavepackets. Reduction means contraction of the wavepackets to the place of overlap. The measurement apparatus fans out the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What does the free will theorem actually prove?Sheldon Goldstein - unknown
    Conway and Kochen have presented a “free will theorem” [4, 6] which they claim shows that “if indeed we humans have free will, then [so do] elementary particles.” In a more precise fashion, they claim it shows that for certain quantum experiments in which the experimenters can choose between several options, no deterministic or stochastic model can account for the observed outcomes without violating a condition “MIN” motivated by relativistic symmetry. We point out that for stochastic models this conclusion is (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonlocality Without Nonlocality.Steven Weinstein - 2009 - Foundations of Physics 39 (8):921-936.
    Bell’s theorem is purported to demonstrate the impossibility of a local “hidden variable” theory underpinning quantum mechanics. It relies on the well-known assumption of ‘locality’, and also on a little-examined assumption called ‘statistical independence’ (SI). Violations of this assumption have variously been thought to suggest “backward causation”, a “conspiracy” on the part of nature, or the denial of “free will”. It will be shown here that these are spurious worries, and that denial of SI simply implies nonlocal correlation between spacelike (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Free Will: The Scandal in Philosophy.Bob Doyle - 2011 - Cambridge, MA, USA: I-Phi Press.
    A sourcebook/textbook on the problem of free will and determinism. Contains a history of the free will problem, a taxonomy of current free will positions, the standard argument against free will, the physics, biology, and neuroscience of free will, the most plausible and practical solution of the problem, and reviews of the work of the leading determinist Ted Honderich, the leading libertarian Robert Kane, the well-known compatibilist Daniel Dennett, and the determinism-agnostic Alfred Mele.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Against the 'no-go' philosophy of quantum mechanics.Federico Laudisa - 2014 - European Journal for Philosophy of Science 4 (1):1-17.
    In the area of the foundations of quantum mechanics a true industry appears to have developed in the last decades, with the aim of proving as many results as possible concerning what there cannot be in the quantum realm. In principle, the significance of proving ‘no-go’ results should consist in clarifying the fundamental structure of the theory, by pointing out a class of basic constraints that the theory itself is supposed to satisfy. In the present paper I will discuss some (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Can Physics Make Us Free?Tuomas K. Pernu - 2017 - Frontiers in Physics 5.
    A thoroughly physical view on reality and our common sense view on agency and free will seem to be in a direct conflict with each other: if everything that happens is determined by prior physical events, so too are all our actions and conscious decisions; you have no choice but to do what you are destined to do. Although this way of thinking has intuitive appeal, and a long history, it has recently began to gain critical attention. A number of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constraints on Determinism: Bell Versus Conway–Kochen.Eric Cator & Klaas Landsman - 2014 - Foundations of Physics 44 (7):781-791.
    Bell’s Theorem from Physics 36:1–28 (1964) and the (Strong) Free Will Theorem of Conway and Kochen from Notices AMS 56:226–232 (2009) both exclude deterministic hidden variable theories (or, in modern parlance, ‘ontological models’) that are compatible with some small fragment of quantum mechanics, admit ‘free’ settings of the archetypal Alice and Bob experiment, and satisfy a locality condition akin to parameter independence. We clarify the relationship between these theorems by giving reformulations of both that exactly pinpoint their resemblance and their (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Isolation, not locality.Heather Demarest & Michael Townsen Hicks - 2020 - Philosophy and Phenomenological Research 103 (3):607-619.
    There is a long tradition of preferring local theories to ones that posit lawful or causal influence at a spacetime distance. In this paper, we argue against this preference. We argue that nonlocality is scientifically unobjectionable and that nonlocal theories can be known. Scientists can gather evidence for them and confirm them in much the same way that they do for local theories. We think these observations point to a deeper constraint on scientific theorizing and experimentation: the (quasi‐) isolation of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Conway-Kochen Argument and Relativistic GRW Models.Angelo Bassi & GianCarlo Ghirardi - 2007 - Foundations of Physics 37 (2):169-185.
    In a recent paper, Conway and Kochen proposed what is now known as the “Free Will theorem” which, among other things, should prove the impossibility of combining GRW models with special relativity, i.e., of formulating relativistically invariant models of spontaneous wavefunction collapse. Since their argument basically amounts to a non-locality proof for any theory aiming at reproducing quantum correlations, and since it was clear since very a long time that any relativistic collapse model must be non-local in some way, we (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Role of Quantum Mechanics in Understanding the Phenomenon of Consciousness.Igor V. Cherepanov & Черепанов Игорь Владимирович - 2022 - RUDN Journal of Philosophy 26 (4):770-789.
    The article analyzes the effectiveness of quantum theories of mental experience in relation to two ontological problems - the problem of the existence of consciousness in the material world and the problem of the interaction of consciousness and body. A critical analysis of the quantum theories of consciousness by Penrose-Hameroff, M. Tegmark, G. Stapp, M. Fischer and M.B. Mensky shows that they fail to fully explain how complex physical systems generate mental experience without violating the principle of causal closure of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Science Generates Limit Paradoxes.Eric Dietrich & Chris Fields - 2015 - Axiomathes 25 (4):409-432.
    The sciences occasionally generate discoveries that undermine their own assumptions. Two such discoveries are characterized here: the discovery of apophenia by cognitive psychology and the discovery that physical systems cannot be locally bounded within quantum theory. It is shown that such discoveries have a common structure and that this common structure is an instance of Priest’s well-known Inclosure Schema. This demonstrates that science itself is dialetheic: it generates limit paradoxes. How science proceeds despite this fact is briefly discussed, as is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lorentz-Invariant, Retrocausal, and Deterministic Hidden Variables.Aurélien Drezet - 2019 - Foundations of Physics 49 (10):1166-1199.
    We review several no-go theorems attributed to Gisin and Hardy, Conway and Kochen purporting the impossibility of Lorentz-invariant deterministic hidden-variable model for explaining quantum nonlocality. Those theorems claim that the only known solution to escape the conclusions is either to accept a preferred reference frame or to abandon the hidden-variable program altogether. Here we present a different alternative based on a foliation dependent framework adapted to deterministic hidden variables. We analyse the impact of such an approach on Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • de Broglie–Bohm Formulation of Dirac Fields.Luca Fabbri - 2022 - Foundations of Physics 52 (6):1-20.
    We present the theory of Dirac spinors in the formulation given by Bohm on the idea of de Broglie: the quantum relativistic matter field is equivalently re-written as a special type of classical fluid and in this formulation it is shown how a relativistic environment can host the non-local aspects of the above-mentioned hidden-variables theory. Sketches for extensions are given at last.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Flea on Schrödinger's Cat.P. N. & Robin Reuvers - 2013 - Foundations of Physics 43 (3):373-407.
    We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr’s views. Unlike the usual formulation (in which the post-measurement state is a unit vector in Hilbert space), our version actually opens the possibility of admitting a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • QBism, the Perimeter of Quantum Bayesianism.Christopher A. Fuchs - 2010
    This article summarizes the Quantum Bayesian point of view of quantum mechanics, with special emphasis on the view's outer edges---dubbed QBism. QBism has its roots in personalist Bayesian probability theory, is crucially dependent upon the tools of quantum information theory, and most recently, has set out to investigate whether the physical world might be of a type sketched by some false-started philosophies of 100 years ago (pragmatism, pluralism, nonreductionism, and meliorism). Beyond conceptual issues, work at Perimeter Institute is focused on (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Branching space-times, general relativity, the Hausdorff property, and modal consistency.Thomas Muller - unknown
    The logical theory of branching space-times, which is intended to provide a framework for studying objective indeterminism, remains at a certain distance from the discussion of space-time theories in the philosophy of physics. In a welcome attempt to clarify the connection, Earman has recently found fault with the branching approach and suggested ``pruning some branches from branching space-time''. The present note identifies the different---order theoretic vs. topological---points of view of both discussion as a reason for certain misunderstandings, and tries to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed to quantitatively (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Time Symmetric Quantum Mechanics and Causal Classical Physics?Fritz W. Bopp - 2017 - Foundations of Physics 47 (4):490-504.
    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual “near future” macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Observer Effect.Massimiliano Sassoli de Bianchi - 2013 - Foundations of Science 18 (2):213-243.
    Founding our analysis on the Geneva-Brussels approach to the foundations of physics, we provide a clarification and classification of the key concept of observation. An entity can be observed with or without a scope. In the second case, the observation is a purely non-invasive discovery process; in the first case, it is a purely invasive process, which can involve either creation or destruction aspects. An entity can also be observed with or without a full control over the observational process. In (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Experiment Paradox in Physics.Michał Eckstein & Paweł Horodecki - 2020 - Foundations of Science 27 (1):1-15.
    Modern physics is founded on two mainstays: mathematical modelling and empirical verification. These two assumptions are prerequisite for the objectivity of scientific discourse. Here we show, however, that they are contradictory, leading to the ‘experiment paradox’. We reveal that any experiment performed on a physical system is—by necessity—invasive and thus establishes inevitable limits to the accuracy of any mathematical model. We track its manifestations in both classical and quantum physics and show how it is overcome ‘in practice’ via the concept (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completely real? A critical note on the claims by Colbeck and Renner.R. Hermens - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:121-137.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Subjectness of Intelligence: Quantum-Theoretic Analysis and Ethical Perspective.Ilya A. Surov & Elena N. Melnikova - forthcoming - Foundations of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Conway–Kochen and the Finite Precision Loophole.Ronnie Hermens - 2014 - Foundations of Physics 44 (10):1038-1048.
    Recently Cator and Landsman made a comparison between Bell’s Theorem and Conway and Kochen’s Strong Free Will Theorem. Their overall conclusion was that the latter is stronger in that it uses fewer assumptions, but also that it has two shortcomings. Firstly, no experimental test of the Conway–Kochen Theorem has been performed thus far, and, secondly, because the Conway–Kochen Theorem is strongly connected to the Kochen–Specker Theorem it may be susceptible to the finite precision loophole of Meyer, Kent and Clifton. In (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reply to Comments of Bassi, Ghirardi, and Tumulka on the Free Will Theorem.John Conway & Simon Kochen - 2007 - Foundations of Physics 37 (11):1643-1647.
    We respond to criticisms of our paper “The Free Will Theorem”, and produce a new form of the theorem based on weaker assumptions.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural Cybernetics of Time, or about the Half of any Whole.Vasil Penchev - 2021 - Information Systems eJournal (Elsevier: SSRN) 4 (28):1-55.
    Norbert Wiener’s idea of “cybernetics” is linked to temporality as in a physical as in a philosophical sense. “Time orders” can be the slogan of that natural cybernetics of time: time orders by itself in its “screen” in virtue of being a well-ordering valid until the present moment and dividing any totality into two parts: the well-ordered of the past and the yet unordered of the future therefore sharing the common boundary of the present between them when the ordering is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Free Will in Human Behavior and Physics.Vasil Penchev - 2020 - Labor and Social Relations 30 (6):185-196.
    If the concept of “free will” is reduced to that of “choice” all physical world shares the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly a certain goal, and the choice is only the mean, by which the aim can be achieved or not by the one who determines the target. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Free Will in a Quantum World?Valia Allori - 2019 - In J. Acacio de Barros & Carlos Montemayor (eds.), Quanta and Mind: Essays on the Connection Between Quantum Mechanics and Consciousness. Springer Verlag.
    In this paper, I argue that Conway and Kochen’s Free Will Theorem (1,2) to the conclusion that quantum mechanics and relativity entail freedom for the particles, does not change the situation in favor of a libertarian position as they would like. In fact, the theorem more or less implicitly assumes that people are free, and thus it begs the question. Moreover, it does not prove neither that if people are free, so are particles, nor that the property people possess when (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual or “complimentary” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Class of Examples Demonstrating That 'P ≠ NP' in the 'P Vs NP' Problem.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (19):1-19.
    The CMI Millennium “P vs NP Problem” can be resolved e.g. if one shows at least one counterexample to the "P = NP" conjecture. A certain class of problems being such counterexamples will be formulated. This implies the rejection of the hypothesis that "P = NP" for any conditions satisfying the formulation of the problem. Thus, the solution "P is different from NP" of the problem in general is proved. The class of counterexamples can be interpreted as any quantum superposition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of quantum mechanics the absence of hidden variables, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum physics and consciousness: a (strong) defense of panpsychism.Carlos Eduardo Maldonado - 2018 - Trans/Form/Ação 41 (s1):101-118.
    : Probably the crux of quantum science is the relationship between consciousness and reality. The name for that relation is varied, and points out to a most fundamental problem, namely the possibility to overcome dualism. In science and philosophy at large, determinism and reductionism have already been tackled, if not superseded. The trouble though remains with dualism. This paper argues in favor of a radical relationship between reality and consciousness based on quantum theory. Such a relation is panpsychism, which can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A verisimilitudinarian analysis of the Linda paradox.Gustavo Cevolani, Vincenzo Crupi & Roberto Festa - 2012 - VII Conference of the Spanish Society for Logic, Methodology and Philosphy of Science.
    The Linda paradox is a key topic in current debates on the rationality of human reasoning and its limitations. We present a novel analysis of this paradox, based on the notion of verisimilitude as studied in the philosophy of science. The comparison with an alternative analysis based on probabilistic confirmation suggests how to overcome some problems of our account by introducing an adequately defined notion of verisimilitudinarian confirmation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice among infinitely many alternatives, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Quantum Occasionalism.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    Both transition and transformation link the ideal and material into a whole. Future is what “causes” the present, and the latter in turn is what “causes” the past. That kind of “reverse causality” needs free choice and free will in the present in order to be able to be realized unlike classical causality. A few properties feature the concept of “quantum occasionalism” as follows. Some hypothetical entity generates successively a series of well-ordered states. That hypothetical entity is called “coherent state” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: The role of process metaphysics in our world of science.Franz G. Riffert & Timothy E. Eastman - 2008 - World Futures 64 (2):73 – 83.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Free Will and No-conspiracy.Iñaki San Pedro - 2013 - In Tilman Sauer & Adrian Wüthrich (eds.), New Vistas on Old Problems. Max Planck Research Library for the History and Development of Knowledge. pp. 87-102.
    In this paper, I challenge the widespread view that Measurement Independence adequately represents the requirement that EPR experimenters have free will. Measurement Independence is most commonly taken as a necessary condition for free will. A number of implicit assumptions can be identified in this regard, all of which can be challenged on their own grounds. As a result, I conclude that Measurement Independence-type conditions are not to be justified by appealing to the preservation of the EPR experimenters’ free will.
    Download  
     
    Export citation  
     
    Bookmark