Switch to: References

Citations of:

Equivalential logics

Studia Logica 40 (3):227-236 (1981)

Add citations

You must login to add citations.
  1. On free annotated algebras.Renato Lewin, Irene Mikenberg & María Schwarze - 2001 - Annals of Pure and Applied Logic 108 (1-3):249-259.
    In Lewin et al. 359–386) the authors proved that certain systems of annotated logics are algebraizable in the sense of Block and Rigozzi 396). Later in Lewin et al. the study of the associated quasi-varieties of annotated algebras is initiated. In this paper we continue the study of the these classes of algebras, in particular, we report some recent results about the free annotated algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • Replacement in Logic.Lloyd Humberstone - 2013 - Journal of Philosophical Logic 42 (1):49-89.
    We study a range of issues connected with the idea of replacing one formula by another in a fixed context. The replacement core of a consequence relation ⊢ is the relation holding between a set of formulas {A1,..., Am,...} and a formula B when for every context C, we have C,..., C,... ⊢ C. Section 1 looks at some differences between which inferences are lost on passing to the replacement cores of the classical and intuitionistic consequence relations. For example, we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Juxtaposition: A New Way to Combine Logics.Joshua Schechter - 2011 - Review of Symbolic Logic 4 (4):560-606.
    This paper develops a new framework for combining propositional logics, called "juxtaposition". Several general metalogical theorems are proved concerning the combination of logics by juxtaposition. In particular, it is shown that under reasonable conditions, juxtaposition preserves strong soundness. Under reasonable conditions, the juxtaposition of two consequence relations is a conservative extension of each of them. A general strong completeness result is proved. The paper then examines the philosophically important case of the combination of classical and intuitionist logics. Particular attention is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: More on Protoalgebraicity.George Voutsadakis - 2006 - Notre Dame Journal of Formal Logic 47 (4):487-514.
    Protoalgebraic logics are characterized by the monotonicity of the Leibniz operator on their theory lattices and are at the lower end of the Leibniz hierarchy of abstract algebraic logic. They have been shown to be the most primitive among those logics with a strong enough algebraic character to be amenable to algebraic study techniques. Protoalgebraic π-institutions were introduced recently as an analog of protoalgebraic sentential logics with the goal of extending the Leibniz hierarchy from the sentential framework to the π-institution (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Synonymous logics.Francis Jeffry Pelletier & Alasdair Urquhart - 2003 - Journal of Philosophical Logic 32 (3):259-285.
    This paper discusses the general problem of translation functions between logics, given in axiomatic form, and in particular, the problem of determining when two such logics are "synonymous" or "translationally equivalent." We discuss a proposed formal definition of translational equivalence, show why it is reasonable, and also discuss its relation to earlier definitions in the literature. We also give a simple criterion for showing that two modal logics are not translationally equivalent, and apply this to well-known examples. Some philosophical morals (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The Poset of All Logics II: Leibniz Classes and Hierarchy.R. Jansana & T. Moraschini - 2023 - Journal of Symbolic Logic 88 (1):324-362.
    A Leibniz class is a class of logics closed under the formation of term-equivalent logics, compatible expansions, and non-indexed products of sets of logics. We study the complete lattice of all Leibniz classes, called the Leibniz hierarchy. In particular, it is proved that the classes of truth-equational and assertional logics are meet-prime in the Leibniz hierarchy, while the classes of protoalgebraic and equivalential logics are meet-reducible. However, the last two classes are shown to be determined by Leibniz conditions consisting of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Poset of All Logics I: Interpretations and Lattice Structure.R. Jansana & T. Moraschini - 2021 - Journal of Symbolic Logic 86 (3):935-964.
    A notion of interpretation between arbitrary logics is introduced, and the poset$\mathsf {Log}$of all logics ordered under interpretability is studied. It is shown that in$\mathsf {Log}$infima of arbitrarily large sets exist, but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential logics is established. The relations between$\mathsf {Log}$and the lattice of interpretability types of varieties are investigated.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fregean logics.J. Czelakowski & D. Pigozzi - 2004 - Annals of Pure and Applied Logic 127 (1-3):17-76.
    According to Frege's principle the denotation of a sentence coincides with its truth-value. The principle is investigated within the context of abstract algebraic logic, and it is shown that taken together with the deduction theorem it characterizes intuitionistic logic in a certain strong sense.A 2nd-order matrix is an algebra together with an algebraic closed set system on its universe. A deductive system is a second-order matrix over the formula algebra of some fixed but arbitrary language. A second-order matrix A is (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Some remarks on axiomatizing logical consequence operations.Jacek Malinowski - 2005 - Logic and Logical Philosophy 14 (1):103-117.
    In this paper we investigate the relation between the axiomatization of a given logical consequence operation and axiom systems defining the class of algebras related to that consequence operation. We show examples which prove that, in general there are no natural relation between both ways of axiomatization.
    Download  
     
    Export citation  
     
    Bookmark  
  • Characterizing equivalential and algebraizable logics by the Leibniz operator.Burghard Herrmann - 1997 - Studia Logica 58 (2):305-323.
    In [14] we used the term finitely algebraizable for algebraizable logics in the sense of Blok and Pigozzi [2] and we introduced possibly infinitely algebraizable, for short, p.i.-algebraizable logics. In the present paper, we characterize the hierarchy of protoalgebraic, equivalential, finitely equivalential, p.i.-algebraizable, and finitely algebraizable logics by properties of the Leibniz operator. A Beth-style definability result yields that finitely equivalential and finitely algebraizable as well as equivalential and p.i.-algebraizable logics can be distinguished by injectivity of the Leibniz operator. Thus, (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Beth Property in Algebraic Logic.W. J. Blok & Eva Hoogland - 2006 - Studia Logica 83 (1-3):49-90.
    The present paper is a study in abstract algebraic logic. We investigate the correspondence between the metalogical Beth property and the algebraic property of surjectivity of epimorphisms. It will be shown that this correspondence holds for the large class of equivalential logics. We apply our characterization theorem to relevance logics and many-valued logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Constructible models of orthomodular quantum logics.Piotr Wilczek - unknown
    We continue in this article the abstract algebraic treatment of quantum sentential logics Wil. The Notions borrowed from the field of Model Theory and Abstract Algebraic Logic - AAL (i.e., consequence relation, variety, logical matrix, deductive filter, reduced product, ultraproduct, ultrapower, Frege relation, Leibniz congruence, Suszko congruence, Leibniz operator) are applied to quantum logics. We also proved several equivalences between state property systems (Jauch-Piron-Aerts line of investigations) and AAL treatment of quantum logics (corollary 18 and 19). We show that there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equivalential and algebraizable logics.Burghard Herrmann - 1996 - Studia Logica 57 (2-3):419 - 436.
    The notion of an algebraizable logic in the sense of Blok and Pigozzi [3] is generalized to that of a possibly infinitely algebraizable, for short, p.i.-algebraizable logic by admitting infinite sets of equivalence formulas and defining equations. An example of the new class is given. Many ideas of this paper have been present in [3] and [4]. By a consequent matrix semantics approach the theory of algebraizable and p.i.-algebraizable logics is developed in a different way. It is related to the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Logics and operators.Janusz Czelakowski - 1995 - Logic and Logical Philosophy 3:87-100.
    Two connectives are of special interest in metalogical investigations — the connective of implication which is important due to its connections to the notion of inference, and the connective of equivalence. The latter connective expresses, in the material sense, the fact that two sentences have the same logical value while in the strict sense it expresses the fact that two sentences are interderivable on the basis of a given logic. The process of identification of equivalent sentences relative to theories of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relation Formulas for Protoalgebraic Equality Free Quasivarieties; Pałasińska’s Theorem Revisited.Anvar M. Nurakunov & Michał M. Stronkowski - 2013 - Studia Logica 101 (4):827-847.
    We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are ${\mathcal{Q}}$ Q -relation formulas for a protoalgebraic equality free quasivariety ${\mathcal{Q}}$ Q . They are the counterparts of the congruence formulas used for describing the generation of congruences in algebras. Having this tool in hand, we prove a finite axiomatization theorem for ${\mathcal{Q}}$ Q when it has definable principal ${\mathcal{Q}}$ Q -subrelations. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Protoalgebraic logics.W. J. Blok & Don Pigozzi - 1986 - Studia Logica 45 (4):337 - 369.
    There exist important deductive systems, such as the non-normal modal logics, that are not proper subjects of classical algebraic logic in the sense that their metatheory cannot be reduced to the equational metatheory of any particular class of algebras. Nevertheless, most of these systems are amenable to the methods of universal algebra when applied to the matrix models of the system. In the present paper we consider a wide class of deductive systems of this kind called protoalgebraic logics. These include (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: Truth-Equational $pi$-Institutions.George Voutsadakis - 2015 - Notre Dame Journal of Formal Logic 56 (2):351-378.
    Finitely algebraizable deductive systems were introduced by Blok and Pigozzi to capture the essential properties of those deductive systems that are very tightly connected to quasivarieties of universal algebras. They include the equivalential logics of Czelakowski. Based on Blok and Pigozzi’s work, Herrmann defined algebraizable deductive systems. These are the equivalential deductive systems that are also truth-equational, in the sense that the truth predicate of the class of their reduced matrix models is explicitly definable by some set of unary equations. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Negation by iteration.I. L. Humberstone - 1995 - Theoria 61 (1):1-24.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Logical matrices and the amalgamation property.Janusz Czelakowski - 1982 - Studia Logica 41 (4):329 - 341.
    The main result of the present paper — Theorem 3 — establishes the equivalence of the interpolation and amalgamation properties for a large family of logics and their associated classes of matrices.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Some theorems on structural entailment relations.Janusz Czelakowski - 1983 - Studia Logica 42 (4):417 - 429.
    The classesMatr( ) of all matrices (models) for structural finitistic entailments are investigated. The purpose of the paper is to prove three theorems: Theorem I.7, being the counterpart of the main theorem from Czelakowski [3], and Theorems II.2 and III.2 being the entailment counterparts of Bloom's results [1]. Theorem I.7 states that if a classK of matrices is adequate for , thenMatr( ) is the least class of matrices containingK and closed under the formation of ultraproducts, submatrices, strict homomorphisms and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (3 other versions)Categorical abstract algebraic logic: The criterion for deductive equivalence.George Voutsadakis - 2003 - Mathematical Logic Quarterly 49 (4):347-352.
    Equivalent deductive systems were introduced in [4] with the goal of treating 1-deductive systems and algebraic 2-deductive systems in a uniform way. Results of [3], appropriately translated and strengthened, show that two deductive systems over the same language type are equivalent if and only if their lattices of theories are isomorphic via an isomorphism that commutes with substitutions. Deductive equivalence of π-institutions [14, 15] generalizes the notion of equivalence of deductive systems. In [15, Theorem 10.26] this criterion for the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pseudo-referential matrix semantics for propositional logics.Ryszard Wójcicki - 1983 - Bulletin of the Section of Logic 12 (3):90-96.
    Download  
     
    Export citation  
     
    Bookmark  
  • Possible Worlds in Use.Andrzej Indrzejczak - 2011 - Studia Logica 99 (1-3):229-248.
    The paper is a brief survey of the most important semantic constructions founded on the concept of possible world. It is impossible to capture in one short paper the whole variety of the problems connected with manifold applications of possible worlds. Hence, after a brief explanation of some philosophical matters I take a look at possible worlds from rather technical standpoint of logic and focus on the applications in formal semantics. In particular, I would like to focus on the fruitful (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Elementary Equivalence for Equality-free Logic.E. Casanovas, P. Dellunde & R. Jansana - 1996 - Notre Dame Journal of Formal Logic 37 (3):506-522.
    This paper is a contribution to the study of equality-free logic, that is, first-order logic without equality. We mainly devote ourselves to the study of algebraic characterizations of its relation of elementary equivalence by providing some Keisler-Shelah type ultrapower theorems and an Ehrenfeucht-Fraïssé type theorem. We also give characterizations of elementary classes in equality-free logic. As a by-product we characterize the sentences that are logically equivalent to an equality-free one.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Choice of primitives: A note on axiomatizing intuitionistic logic.I. L. Humberstone - 1998 - History and Philosophy of Logic 19 (1):31-40.
    A purported axiomatization, by P. Gärdenfors, of intuitionistic propositional logic is shown to be incomplete, and that the mistaken claim to completeness is seen to result from carelessness in the choice of primitive logical vocabulary. This leads to a consideration of various ways of conceiving the distinction between primitive and defined vocabularies, along with the bearing of these differences on such matters as are discussed in connection with Gärdenfors.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Categorical Abstract Algebraic Logic: Behavioral π-Institutions.George Voutsadakis - 2014 - Studia Logica 102 (3):617-646.
    Recently, Caleiro, Gon¸calves and Martins introduced the notion of behaviorally algebraizable logic. The main idea behind their work is to replace, in the traditional theory of algebraizability of Blok and Pigozzi, unsorted equational logic with multi-sorted behavioral logic. The new notion accommodates logics over many-sorted languages and with non-truth-functional connectives. Moreover, it treats logics that are not algebraizable in the traditional sense while, at the same time, shedding new light to the equivalent algebraic semantics of logics that are algebraizable according (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Filter distributive logics.Janusz Czelakowski - 1984 - Studia Logica 43 (4):353 - 377.
    The present paper is thought as a formal study of distributive closure systems which arise in the domain of sentential logics. Special stress is laid on the notion of a C-filter, playing the role analogous to that of a congruence in universal algebra. A sentential logic C is called filter distributive if the lattice of C-filters in every algebra similar to the language of C is distributive. Theorem IV.2 in Section IV gives a method of axiomatization of those filter distributive (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Intuitionistic Logic is a Connexive Logic.Davide Fazio, Antonio Ledda & Francesco Paoli - 2023 - Studia Logica 112 (1):95-139.
    We show that intuitionistic logic is deductively equivalent to Connexive Heyting Logic ($$\textrm{CHL}$$ CHL ), hereby introduced as an example of a strongly connexive logic with an intuitive semantics. We use the reverse algebraisation paradigm: $$\textrm{CHL}$$ CHL is presented as the assertional logic of a point regular variety (whose structure theory is examined in detail) that turns out to be term equivalent to the variety of Heyting algebras. We provide Hilbert-style and Gentzen-style proof systems for $$\textrm{CHL}$$ CHL ; moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On free annotated algebras.Renato A. Lewin, Irene F. Mikenberg & Marı́a G. Schwarze - 2001 - Annals of Pure and Applied Logic 108 (1-3):249-259.
    In Lewin et al. 359–386) the authors proved that certain systems of annotated logics are algebraizable in the sense of Block and Rigozzi 396). Later in Lewin et al. the study of the associated quasi-varieties of annotated algebras is initiated. In this paper we continue the study of the these classes of algebras, in particular, we report some recent results about the free annotated algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite basis theorem for Filter-distributive protoalgebraic deductive systems and strict universal horn classes.Katarzyna Pałasińska - 2003 - Studia Logica 74 (1-2):233 - 273.
    We show that a finitely generated protoalgebraic strict universal Horn class that is filter-distributive is finitely based. Equivalently, every protoalgebraic and filter-distributive multidimensional deductive system determined by a finite set of finite matrices can be presented by finitely many axioms and rules.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Singulary extensional connectives: A closer look. [REVIEW]I. L. Humberstone - 1997 - Journal of Philosophical Logic 26 (3):341-356.
    The totality of extensional 1-ary connectives distinguishable in a logical framework allowing sequents with multiple or empty (alongside singleton) succedents form a lattice under a natural partial ordering relating one connective to another if all the inferential properties of the former are possessed by the latter. Here we give a complete description of that lattice; its Hasse diagram appears as Figure 1 in §2. Simple syntactic descriptions of the lattice elements are provided in §3; §§4 and 5 give some additional (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On weakening the Deduction Theorem and strengthening of Modus Ponens.Félix Bou, Josep Maria Font & José Luis García Lapresta - 2004 - Mathematical Logic Quarterly 50 (3):303.
    This paper studies, with techniques ofAlgebraic Logic, the effects of putting a bound on the cardinality of the set of side formulas in the Deduction Theorem, viewed as a Gentzen-style rule, and of adding additional assumptions inside the formulas present in Modus Ponens, viewed as a Hilbert-style rule. As a result, a denumerable collection of new Gentzen systems and two new sentential logics have been isolated. These logics are weaker than the positive implicative logic. We have determined their algebraic models (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algebraic study of Sette's maximal paraconsistent logic.Alexej P. Pynko - 1995 - Studia Logica 54 (1):89 - 128.
    The aim of this paper is to study the paraconsistent deductive systemP 1 within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse thatP 1 is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebraS being the unique quasivariety semantics forP 1. In the present paper we prove that the mentioned quasivariety is not a variety by showing that the variety generated byS is not equivalent to any algebraizable (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Algebraic aspects of deduction theorems.Janusz Czelakowski - 1985 - Studia Logica 44 (4):369 - 387.
    The first known statements of the deduction theorems for the first-order predicate calculus and the classical sentential logic are due to Herbrand [8] and Tarski [14], respectively. The present paper contains an analysis of closure spaces associated with those sentential logics which admit various deduction theorems. For purely algebraic reasons it is convenient to view deduction theorems in a more general form: given a sentential logic C (identified with a structural consequence operation) in a sentential language I, a quite arbitrary (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Categorical Abstract Algebraic Logic: Prealgebraicity and Protoalgebraicity.George Voutsadakis - 2007 - Studia Logica 85 (2):215-249.
    Two classes of π are studied whose properties are similar to those of the protoalgebraic deductive systems of Blok and Pigozzi. The first is the class of N-protoalgebraic π-institutions and the second is the wider class of N-prealgebraic π-institutions. Several characterizations are provided. For instance, N-prealgebraic π-institutions are exactly those π-institutions that satisfy monotonicity of the N-Leibniz operator on theory systems and N-protoalgebraic π-institutions those that satisfy monotonicity of the N-Leibniz operator on theory families. Analogs of the correspondence property of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Sentential logics and Maehara interpolation property.Janusz Czelakowski - 1985 - Studia Logica 44 (3):265 - 283.
    With each sentential logic C, identified with a structural consequence operation in a sentential language, the class Matr * (C) of factorial matrices which validate C is associated. The paper, which is a continuation of [2], concerns the connection between the purely syntactic property imposed on C, referred to as Maehara Interpolation Property (MIP), and three diagrammatic properties of the class Matr* (C): the Amalgamation Property (AP), the (deductive) Filter Extension Property (FEP) and Injections Transferable (IT). The main theorem of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (3 other versions)Equivalential logics (II).Janusz Czelakowski - 1981 - Studia Logica 40 (4):355 - 372.
    In the first section logics with an algebraic semantics are investigated. Section 2 is devoted to subdirect products of matrices. There, among others we give the matrix counterpart of a theorem of Jónsson from universal algebra. Some positive results concerning logics with, finite degrees of maximality are presented in Section 3.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • On weakening the Deduction Theorem and strengthening Modus Ponens.Félix Bou, Josep Maria Font & José Luis García Lapresta - 2004 - Mathematical Logic Quarterly 50 (3):303-324.
    This paper studies, with techniques ofAlgebraic Logic, the effects of putting a bound on the cardinality of the set of side formulas in the Deduction Theorem, viewed as a Gentzen-style rule, and of adding additional assumptions inside the formulas present in Modus Ponens, viewed as a Hilbert-style rule. As a result, a denumerable collection of new Gentzen systems and two new sentential logics have been isolated. These logics are weaker than the positive implicative logic. We have determined their algebraic models (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Matrices, primitive satisfaction and finitely based logics.Janusz Czelakowski - 1983 - Studia Logica 42 (1):89 - 104.
    We examine the notion of primitive satisfaction in logical matrices. Theorem II. 1, being the matrix counterpart of Baker's well-known result for congruently distributive varieties of algebras (cf [1], Thm. 1.5), links the notions of primitive and standard satisfaction. As a corollary we give the matrix version of Jónsson's Lemma, proved earlier in [4]. Then we investigate propositional logics with disjunction. The main result, Theorem III. 2, states a necessary and sufficient condition for such logics to be finitely based.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Categorical abstract algebraic logic: The categorical Suszko operator.George Voutsadakis - 2007 - Mathematical Logic Quarterly 53 (6):616-635.
    Czelakowski introduced the Suszko operator as a basis for the development of a hierarchy of non-protoalgebraic logics, paralleling the well-known abstract algebraic hierarchy of protoalgebraic logics based on the Leibniz operator of Blok and Pigozzi. The scope of the theory of the Leibniz operator was recently extended to cover the case of, the so-called, protoalgebraic π-institutions. In the present work, following the lead of Czelakowski, an attempt is made at lifting parts of the theory of the Suszko operator to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categorical abstract algebraic logic categorical algebraization of first-order logic without terms.George Voutsadakis - 2005 - Archive for Mathematical Logic 44 (4):473-491.
    An algebraization of multi-signature first-order logic without terms is presented. Rather than following the traditional method of choosing a type of algebras and constructing an appropriate variety, as is done in the case of cylindric and polyadic algebras, a new categorical algebraization method is used: The substitutions of formulas of one signature for relation symbols in another are treated in the object language. This enables the automatic generation via an adjunction of an algebraic theory. The algebras of this theory are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (3 other versions)Categorical abstract algebraic logic: The criterion for deductive equivalence: The criterion for deductive equivalence.George Voutsadakis - 2003 - Mathematical Logic Quarterly 49 (4):347.
    Equivalent deductive systems were introduced in [4] with the goal of treating 1‐deductive systems and algebraic 2‐deductive systems in a uniform way. Results of [3], appropriately translated and strengthened, show that two deductive systems over the same language type are equivalent if and only if their lattices of theories are isomorphic via an isomorphism that commutes with substitutions. Deductive equivalence of π‐institutions [14, 15] generalizes the notion of equivalence of deductive systems. In [15, Theorem 10.26] this criterion for the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Malinowski modalization, modalization through fibring and the Leibniz hierarchy.M. A. Martins & G. Voutsadakis - 2013 - Logic Journal of the IGPL 21 (5):836-852.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong versus weak quantum consequence operations.Jacek Malinowski - 1992 - Studia Logica 51 (1):113 - 123.
    This paper is a study of similarities and differences between strong and weak quantum consequence operations determined by a given class of ortholattices. We prove that the only strong orthologics which admits the deduction theorem (the only strong orthologics with algebraic semantics, the only equivalential strong orthologics, respectively) is the classical logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quasi-subtractive varieties: Open filters, congruences and the commutator.T. Kowalski, A. Ledda & F. Paoli - 2014 - Logic Journal of the IGPL 22 (6):844-871.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quasi-subtractive varieties.Tomasz Kowalski, Francesco Paoli & Matthew Spinks - 2011 - Journal of Symbolic Logic 76 (4):1261-1286.
    Varieties like groups, rings, or Boolean algebras have the property that, in any of their members, the lattice of congruences is isomorphic to a lattice of more manageable objects, for example normal subgroups of groups, two-sided ideals of rings, filters (or ideals) of Boolean algebras.algebraic logic can explain these phenomena at a rather satisfactory level of generality: in every member A of a τ-regular variety ������ the lattice of congruences of A is isomorphic to the lattice of deductive filters on (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Special Implicative Filters.Josep Maria Font - 1999 - Mathematical Logic Quarterly 45 (1):117-126.
    In her well-known book, Rasiowa states without proof that in implicative algebras there is a one-to-one correspondence between kernels of epimorphisms and the so-called special implicative filters, and that in the logic whose algebraic counterpart is the class of implicative algebras the deductive filters coincide with the special implicative filters. We show that neither claim is true, and how to repair the situation by redefining some of the notions involved. We answer other questions concerning special implicative filters, taking the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • General Theory of the Commutator for Deductive Systems. Part I. Basic Facts.Janusz Czelakowski - 2006 - Studia Logica 83 (1-3):183-214.
    The purpose of this paper is to present in a uniform way the commutator theory for k-deductive system of arbitrary positive dimension k. We are interested in the logical perspective of the research — an emphasis is put on an analysis of the interconnections holding between the commutator and logic. This research thus qualifies as belonging to abstract algebraic logic, an area of universal algebra that explores to a large extent the methods provided by the general theory of deductive systems. (...)
    Download  
     
    Export citation  
     
    Bookmark