Switch to: References

Add citations

You must login to add citations.
  1. Quantum Theory Without Hilbert Spaces.C. Anastopoulos - 2001 - Foundations of Physics 31 (11):1545-1580.
    Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Gaussian revolution in logic?J. Almog - 1982 - Erkenntnis 17 (1):47 - 84.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to radical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • On what it takes to be a world.David Z. Albert & Jeffrey A. Barrett - 1995 - Topoi 14 (1):35-37.
    A many-worlds interpretation is of quantum mechanics tells us that the linear equations of motion are the true and complete laws for the time-evolution of every physical system and that the usual quantum-mechanical states provide complete descriptions of all possible physical situations. Such an interpretation, however, denies the standard way of understanding quantum-mechanical states. When the pointer on a measuring device is in a superposition of pointing many different directions, for example, we are to understand this as many pointers, each (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Many-Measurements or Many-Worlds? A Dialogue.Diederik Aerts & Massimiliano Sassoli de Bianchi - 2015 - Foundations of Science 20 (4):399-427.
    Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Does science need intersubjectivity? The problem of confirmation in orthodox interpretations of quantum mechanics.Emily Adlam - 2022 - Synthese 200 (6):1–39.
    Any successful interpretation of quantum mechanics must explain how our empirical evidence allows us to come to know about quantum mechanics. In this article, we argue that this vital criterion is not met by the class of ‘orthodox interpretations,’ which includes QBism, neo-Copenhagen interpretations, and some versions of relational quantum mechanics. We demonstrate that intersubjectivity fails in radical ways in these approaches, and we explain why intersubjectivity matters for empirical confirmation. We take a detailed look at the way in which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum Arrangements.Gregg Jaeger & Anton Zeilinger - 2021 - Cham, Switzerland: Springer Nature.
    This book presents a collection of novel contributions and reviews by renowned researchers in the foundations of quantum physics, quantum optics, and neutron physics. It is published in honor of Michael Horne, whose exceptionally clear and groundbreaking work in the foundations of quantum mechanics and interferometry, both of photons and of neutrons, has provided penetrating insight into the implications of modern physics for our understanding of the physical world. He is perhaps best known for the Clauser-Horne-Shimony-Holt (CHSH) inequality. This collection (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hypothetical Frequencies as Approximations.Jer Steeger - 2024 - Erkenntnis 89 (4):1295-1325.
    Hájek (Erkenntnis 70(2):211–235, 2009) argues that probabilities cannot be the limits of relative frequencies in counterfactual infinite sequences. I argue for a different understanding of these limits, drawing on Norton’s (Philos Sci 79(2):207–232, 2012) distinction between approximations (inexact descriptions of a target) and idealizations (separate models that bear analogies to the target). Then, I adapt Hájek’s arguments to this new context. These arguments provide excellent reasons not to use hypothetical frequencies as idealizations, but no reason not to use them as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hypothetical Metaphysics of Nature.Michael Esfeld - 2009 - In Michael Heidelberger & Gregor Schiemann (eds.), The Significance of the Hypothetical in Natural Science. De Gruyter. pp. 341-364.
    The paper first sketches out a reply to the underdetermination challenge and the incommensurability challenge that rebuts the sceptical conclusions of these challenges and that is sufficient to lay the ground for the project of a metaphysics of nature. That metaphysics is as hypothetical as are our scientific theories. The paper then explains how can one can argue for certain views in the metaphysics of nature based on our current fundamental physical theories, namely the commitments to a tenseless theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The History of Moral Certainty as the Pre-History of Typicality.Mario Hubert - 2024 - Physics and the Nature of Reality: Essays in Memory of Detlef Dürr.
    This paper investigates the historical origin and ancestors of typicality, which is now a central concept in Boltzmannian Statistical Mechanics and Bohmian Mechanics. Although Ludwig Boltzmann did not use the word typicality, its main idea, namely, that something happens almost always or is valid for almost all cases, plays a crucial role for his explanation of how thermodynamic systems approach equilibrium. At the beginning of the 20th century, the focus on almost always or almost everywhere was fruitful for developing measure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Digital and the Real Universe Foundations of Natural Philosophy and Computational Physics.Klaus Mainzer - 2019 - Philosophies 4 (1):3.
    In the age of digitization, the world seems to be reducible to a digital computer. However, mathematically, modern quantum field theories do not only depend on discrete, but also continuous concepts. Ancient debates in natural philosophy on atomism versus the continuum are deeply involved in modern research on digital and computational physics. This example underlines that modern physics, in the tradition of Newton’s Principia Mathematica Philosophiae Naturalis, is a further development of natural philosophy with the rigorous methods of mathematics, measuring, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Can we quarantine the quantum blight?Craig Callender - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    No shield can protect scientific realism from dealing with the quantum measurement problem. One may be able to erect barriers around the observable or classical, preserving a realism about tables, chairs and the like, but there is no safety zone within the quantum realm, the domain of our best physical theory. The upshot is not necessarily that scientific realism is in trouble. That conclusion demands further arguments. The lesson instead may be that scientific realists ought to stake their case on (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Bare Theory Has No Clothes.Jeffrey Bub, Rob Clifton & Bradley Monton - 1998 - In Richard Healey & Geoffrey Hellman (eds.), Quantum Measurement: Beyond Paradox. University of Minnesota Press. pp. 32-51.
    We criticize the bare theory of quantum mechanics -- a theory on which the Schrödinger equation is universally valid, and standard way of thinking about superpositions is correct.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Physicalism, not scientism.Alyssa Ney - 2018 - In Jeroen de Ridder, Rik Peels & Rene van Woudenberg (eds.), Scientism: Prospects and Problems. Oxford: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Space is blue and birds fly through it.Carlo Rovelli - unknown
    Quantum mechanics is not about 'quantum states': it is about values of physical variables. I give a short fresh presentation and update on the *relational* perspective on the theory, and a comment on its philosophical implications.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Physics and Causation.Michael Esfeld - 2010 - Foundations of Physics 40 (9-10):1597-1610.
    The paper makes a case for there being causation in the form of causal properties or causal structures in the domain of fundamental physics. That case is built in the first place on an interpretation of quantum theory in terms of state reductions so that there really are both entangled states and classical properties, GRW being the most elaborate physical proposal for such an interpretation. I then argue that the interpretation that goes back to Everett can also be read in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is the Past Determined?Herve Zwirn - 2021 - Foundations of Physics 51 (3):1-28.
    In a recent paper (Zwirn in Phys Essays 30: 3, 2017), I argued against backward in time effects used by several authors to explain delayed choice experiments. I gave an explanation showing that there is no physical influence propagating from the present to the past and modifying the state of the system at a time previous to the measurement. However, though the solution is straightforward in the case of delayed choice experiments involving only one particle, it is subtler in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Trends in the Philosophy of Physics.Henrik Zinkernagel - 2011 - Theoria 26 (2):215-241.
    A short review of some recent developments in the philosophy of physics is presented. I focus on themes which illustrate relations and points of common interest between philosophy of physics and three of its `neighboring' elds: Physics, metaphysics and general philosophy of science. The main examples discussed in these three `border areas' are decoherence and the interpretation of quantum mechanics; time in physics and metaphysics; and methodological issues surrounding the multiverse idea in modern cosmology.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Importance of Randomness in the Universe: Superdeterminism and Free Will.Sergey B. Yurchenko - 2021 - Axiomathes 31 (4):453-478.
    In physics, free will is debated mainly in regard to the observer-dependent effects. To eliminate them from quantum mechanics, superdeterminism postulates that the universe is a computation, and consciousness is an automaton. As a result, free will is impossible. Quantum no-go theorems tell us that the only natural phenomenon that might be able to account for every bit of freedom in the universe is quantum randomness. With randomness in Nature, the universe could not have been predetermined completely in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Undermind.Steven Weinstein - 1996 - Synthese 106 (2):241 - 251.
    David Albert and Barry Loewer have proposed a new interpretation of quantum mechanics which they call the Many Minds interpretation, according to which there are infinitely many minds associated with a given (physical) state of a brain. This interpretation is related to the family of many worlds interpretations insofar as it assumes strictly unitary (Schrödinger) time-evolution of quantum-mechanical systems (no reduction of the wave-packet). The Many Minds interpretation itself is principally motivated by an argument which purports to show that the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Macroscopic Reality from Quantum Complexity.Don Weingarten - 2022 - Foundations of Physics 52 (2):1-103.
    Beginning with the Everett–DeWitt many-worlds interpretation of quantum mechanics, there have been a series of proposals for how the state vector of a quantum system might split at any instant into orthogonal branches, each of which exhibits approximately classical behavior. Here we propose a decomposition of a state vector into branches by finding the minimum of a measure of the mean squared quantum complexity of the branches in the branch decomposition. In a non-relativistic formulation of this proposal, branching occurs repeatedly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Absolute quantum mechanics.Steven Weinstein - 2001 - British Journal for the Philosophy of Science 52 (1):67-73.
    Whereas one can conceive of a relational classical mechanics in which absolute space and time do not play a fundamental role, quantum mechanics does not readily admit any such relational formulation.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • Reformulating Bell's theorem: The search for a truly local quantum theory.Mordecai Waegell & Kelvin J. McQueen - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:39-50.
    The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. and Bell emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's "no-go" theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is quantum indeterminism real? Theological implications.Claudia E. Vanney - 2015 - Zygon 50 (3):736-756.
    Quantum mechanics studies physical phenomena on a microscopic scale. These phenomena are far beyond the reach of our observation, and the connection between QM's mathematical formalism and the experimental results is very indirect. Furthermore, quantum indeterminism defies common sense. Microphysical experiments have shown that, according to the empirical context, electrons and quanta of light behave as waves and other times as particles, even though it is impossible to design an experiment that manifests both behaviors at the same time. Unlike Newtonian (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • David Wallace the emergent multiverse: Quantum theory according to the Everett interpretation.Lev Vaidman - 2015 - British Journal for the Philosophy of Science 66 (2):465-468.
    We have, then, a theory which is objectively causal and continuous, while at the same time subjectively probabilistic and discontinuous. It can lay claim to a certain completeness, since it applies to all systems, of whatever size, and is still capable of explaining the appearance of the macroscopic world. The price, however, is the abandonment of the concept of the uniqueness of the observer, with its somewhat disconcerting philosophical implications.
    Download  
     
    Export citation  
     
    Bookmark  
  • Informational branching universe.Pierre Uzan - 2010 - Foundations of Science 15 (1):1-28.
    This paper suggests an epistemic interpretation of Belnap’s branching space-times theory based on Everett’s relative state formulation of the measurement operation in quantum mechanics. The informational branching models of the universe are evolving structures defined from a partial ordering relation on the set of memory states of the impersonal observer. The totally ordered set of their information contents defines a linear “time” scale to which the decoherent alternative histories of the informational universe can be referred—which is quite necessary for assigning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ten Reasons to Care About the Sleeping Beauty Problem.Michael G. Titelbaum - 2013 - Philosophy Compass 8 (11):1003-1017.
    The Sleeping Beauty Problem attracts so much attention because it connects to a wide variety of unresolved issues in formal epistemology, decision theory, and the philosophy of science. The problem raises unanswered questions concerning relative frequencies, objective chances, the relation between self-locating and non-self-locating information, the relation between self-location and updating, Dutch Books, accuracy arguments, memory loss, indifference principles, the existence of multiple universes, and many-worlds interpretations of quantum mechanics. After stating the problem, this article surveys its connections to all (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Nonlocality and Information Flow: The Approach of Deutsch and Hayden. [REVIEW]Christopher Gordon Timpson - 2003 - Foundations of Physics 35 (2):313-343.
    Deutsch and Hayden claim to have provided an account of quantum mechanics which is particularly local, and which clarifies the nature of information transmission in entangled quantum systems. In this paper, a perspicuous description of their formalism is offered and their claim assessed. It proves essential to distinguish, as Deutsch and Hayden do not, between two ways of interpreting the formalism. On the first, conservative, interpretation, no benefits with respect to locality accrue that are not already available on either an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The ins and outs of Schrodinger's cat box: a response to Papineau.Paul Tappenden - 2004 - Analysis 64 (2):157-164.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Objective probability and the mind-body relation.Paul Tappenden - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:8-16.
    Objective probability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett’s seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation of Everettian theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Evidence and Uncertainty in Everett’s Multiverse.Paul Tappenden - 2011 - British Journal for the Philosophy of Science 62 (1):99-123.
    How does it come about then, that great scientists such as Einstein, Schrödinger and De Broglie are nevertheless dissatisfied with the situation? Of course, all these objections are levelled not against the correctness of the formulae, but against their interpretation. [...] The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Everettian theory as pure wave mechanics plus a no-collapse probability postulate.Paul Tappenden - 2019 - Synthese 198 (7):6375-6402.
    Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; Wilson in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontological status of time in chemistry.N. Sukumar - 2020 - Foundations of Chemistry 22 (3):353-361.
    While temporal considerations are of prime importance for chemical reactions, as well as for molecular stability, most chemical concepts are not explicitly formulated on a diachronic basis. It will be argued here that a formulation explicitly incorporating temporal and epistemological considerations enables us to treat chemical reactions and chemical substances on ontologically equivalent terms, instead of assigning a more fundamental status to the latter. After all, in collision theory, a chemical substance is just a collision complex that takes too long. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logic of the future in quantum theory.Anthony Sudbery - 2017 - Synthese 194 (11):4429-4453.
    According to quantum mechanics, statements about the future made by sentient beings like us are, in general, neither true nor false; they must satisfy a many-valued logic. I propose that the truth value of such a statement should be identified with the probability that the event it describes will occur. After reviewing the history of related ideas in logic, I argue that it gives an understanding of probability which is particularly satisfactory for use in quantum mechanics. I construct a lattice (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum propensities and the brain-mind connection.Henry P. Stapp - 1991 - Foundations of Physics 21 (12):1451-77.
    It is argued that an adequate scientific treatment of biological systems requires the use of an ontological interpretation of quantum mechanics, and that the propensity interpretation proposed by Popper and others, when applied to the brain, leads to a natural representation of conscious process within the quantum-mechanical description of brain process. Thus quantum mechanics, unlike classical mechanics, has a natural place for consciousness and, moreover, in a sense to be discussed, even requires it.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Book review. [REVIEW]Henry P. Stapp - 1996 - Foundations of Physics 26 (8):1091-1097.
    Download  
     
    Export citation  
     
    Bookmark  
  • The unresolved quantum dilemma.Euan J. Squires - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):389-395.
    Download  
     
    Export citation  
     
    Bookmark  
  • One mind or many? A note on the Everett interpretation of quantum theory.Euan J. Squires - 1991 - Synthese 89 (November):283-6.
    The Everett interpretation of quantum theory requires either the existence of an infinite number of conscious minds associated with each brain or the existence of one universal consciousness. Reasons are given, and the two ideas are compared.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Action of the Whole.Jonathan Schaffer - 2013 - Aristotelian Society Supplementary Volume 87 (1):67-87.
    I discuss an argument for the monistic idea that the cosmos is the one and only fundamental thing, drawing on the idea that the cosmos is the one and only thing that evolves by the fundamental laws.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Pure Quantum Interpretations Are not Viable.I. Schmelzer - 2011 - Foundations of Physics 41 (2):159-177.
    Pure interpretations of quantum theory, which throw away the classical part of the Copenhagen interpretation without adding new structure to its quantum part, are not viable. This is a consequence of a non-uniqueness result for the canonical operators.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Towards a Realistic Interpretation of Quantum Mechanics Providing a Model of the Physical World.Emilio Santos - 2015 - Foundations of Science 20 (4):357-386.
    It is argued that a realistic interpretation of quantum mechanics is possible and useful. Current interpretations, from “Copenhagen” to “many worlds” are critically revisited. The difficulties for intuitive models of quantum physics are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave–particle duality and the Bell inequalities are analyzed. The sketch of a realistic picture of the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Delineando o problema da medição na mecânica quântica: o debate de Margenau e Wigner versus Putnam.Frederik Moreira dos Santos & Osvaldo Pessoa Júnior - 2011 - Scientiae Studia 9 (3):625-644.
    Download  
     
    Export citation  
     
    Bookmark