Switch to: References

Citations of:

Foundations of Set Theory

Atlantic Highlands, NJ, USA: Elsevier (1973)

Add citations

You must login to add citations.
  1. Leśniewski's Systems of Logic and Foundations of Mathematics.Rafal Urbaniak - 2013 - Cham, Switzerland: Springer.
    With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy’s great ...
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Moral Epistemology: The Mathematics Analogy.Justin Clarke-Doane - 2012 - Noûs 48 (2):238-255.
    There is a long tradition comparing moral knowledge to mathematical knowledge. In this paper, I discuss apparent similarities and differences between knowledge in the two areas, realistically conceived. I argue that many of these are only apparent, while others are less philosophically significant than might be thought. The picture that emerges is surprising. There are definitely differences between epistemological arguments in the two areas. However, these differences, if anything, increase the plausibility of moral realism as compared to mathematical realism. It (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Download  
     
    Export citation  
     
    Bookmark  
  • An axiom schema of comprehension of zermelo–fraenkel–skolem set theory.Johannes Heidema - 1990 - History and Philosophy of Logic 11 (1):59-65.
    Unrestricted use of the axiom schema of comprehension, ?to every mathematically (or set-theoretically) describable property there corresponds the set of all mathematical (or set-theoretical) objects having that property?, leads to contradiction. In set theories of the Zermelo?Fraenkel?Skolem (ZFS) style suitable instances of the comprehension schema are chosen ad hoc as axioms, e.g.axioms which guarantee the existence of unions, intersections, pairs, subsets, empty set, power sets and replacement sets. It is demonstrated that a uniform syntactic description may be given of acceptable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Intensionality and paradoxes in ramsey’s ‘the foundations of mathematics’.Dustin Tucker - 2010 - Review of Symbolic Logic 3 (1):1-25.
    In , Frank Ramsey separates paradoxes into two groups, now taken to be the logical and the semantical. But he also revises the logical system developed in Whitehead and Russellthe intensional paradoxess interest in these problems seriously, then the intensional paradoxes deserve more widespread attention than they have historically received.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Paradoxes of intensionality.Dustin Tucker & Richmond H. Thomason - 2011 - Review of Symbolic Logic 4 (3):394-411.
    We identify a class of paradoxes that is neither set-theoretical nor semantical, but that seems to depend on intensionality. In particular, these paradoxes arise out of plausible properties of propositional attitudes and their objects. We try to explain why logicians have neglected these paradoxes, and to show that, like the Russell Paradox and the direct discourse Liar Paradox, these intensional paradoxes are recalcitrant and challenge logical analysis. Indeed, when we take these paradoxes seriously, we may need to rethink the commonly (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • “Prototypes” and “fuzziness” in the logic of concepts.Gy Fuhrmann - 1988 - Synthese 75 (3):317 - 347.
    Prototypes and fuzziness are regarded in this paper as fundamental phenomena in the inherent logic of concepts whose relationship, however, has not been sufficiently clarified. Therefore, modifications are proposed in the definition of both. Prototypes are defined as the elements possessing maximal degree of membership in the given category such thatthis membership has maximal cognitive efficiency in representing theelement. A modified fuzzy set (m-fuzzy set) is defined on aclass (possibly self-contradictory collection) such that its core (the collection of elements with (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Scientific Theories, Models and the Semantic Approach.Krause Décio & Bueno Otávio - 2007 - Principia: An International Journal of Epistemology 11 (2):187-201.
    According to the semantic view, a theory is characterized by a class of models. In this paper, we examine critically some of the assumptions that underlie this approach. First, we recall that models are models of something. Thus we cannot leave completely aside the axiomatization of the theories under consideration, nor can we ignore the metamathematics used to elaborate these models, for changes in the metamathematics often impose restrictions on the resulting models. Second, based on a parallel between van Fraassen’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A very strong set theory?Andrzej Kisielewicz - 1998 - Studia Logica 61 (2):171-178.
    Using two distinct membership symbols makes possible to base set theory on one general axiom schema of comprehension. Is the resulting system consistent? Can set theory and mathematics be based on a single axiom schema of comprehension?
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)The Warsaw School of Logic: Main Pillars, Ideas, Significance.Urszula Wybraniec-Skardowska - 2024 - Studia Humana 13 (1):17-27.
    The Warsaw School of Logic (WSL) was the famous branch of the Lviv-Warsaw School (LWS) – the most important movement in the history of Polish philosophy. Logic made the most important field in the activities of the WSL. The aim of this work is to highlight the role and significance of the WSL in the history of logic in the 20th century.
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction to Knowledge, Number and Reality. Encounters with the Work of Keith Hossack.Nils Kürbis, Jonathan Nassim & Bahram Assadian - 2022 - In Nils Kürbis, Bahram Assadian & Jonathan Nassim (eds.), Knowledge, Number and Reality: Encounters with the Work of Keith Hossack. London: Bloomsbury. pp. 1-30.
    The Introduction to "Knowledge, Number and Reality. Encounters with the Work of Keith Hossack" provides an overview over Hossack's work and the contributions to the volume.
    Download  
     
    Export citation  
     
    Bookmark  
  • تحلیل منطقی فلسفی پارادوکس اسکولم. Mansooreh - 2015 - Dissertation,
    ریاضیدانان هرروز با مجموعههای ناشمارا، مجموعهی توانی، خوشترتیبی، تناهی و ... سروکار دارند و با این تصور که این مفاهیم همان چیزهایی هستند که در ذهن دارند، کتابها و اثباتهای ریاضی را میخوانند و میفهمند و درمورد آنها صحبت میکنند. اما آیا این مفاهیم همان چیزهایی هستند که ریاضیدانان تصور میکنند؟ اولینبار اسکولم با بیان یک پارادوکس شک خود را به این موضوع ابراز کرد. بنابر قضیهی لوونهایم اسکولم رو به پایین، نظریه مجموعهها مدلی شمارا دارد. این مدل قضیهی کانتور (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Absence perception and the philosophy of zero.Neil Barton - 2020 - Synthese 197 (9):3823-3850.
    Zero provides a challenge for philosophers of mathematics with realist inclinations. On the one hand it is a bona fide cardinal number, yet on the other it is linked to ideas of nothingness and non-being. This paper provides an analysis of the epistemology and metaphysics of zero. We develop several constraints and then argue that a satisfactory account of zero can be obtained by integrating an account of numbers as properties of collections, work on the philosophy of absences, and recent (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege Meets Zermelo: A Perspective on Ineffability and Reflection.Stewart Shapiro - 2008 - Review of Symbolic Logic 1 (2):241-266.
    1. Philosophical background: iteration, ineffability, reflection. There are at least two heuristic motivations for the axioms of standard set theory, by which we mean, as usual, first-order Zermelo–Fraenkel set theory with the axiom of choice (ZFC): the iterative conception and limitation of size (see Boolos, 1989). Each strand provides a rather hospitable environment for the hypothesis that the set-theoretic universe is ineffable, which is our target in this paper, although the motivation is different in each case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Platitudes in mathematics.Thomas Donaldson - 2015 - Synthese 192 (6):1799-1820.
    The term ‘continuous’ in real analysis wasn’t given an adequate formal definition until 1817. However, important theorems about continuity were proven long before that. How was this possible? In this paper, I introduce and refine a proposed answer to this question, derived from the work of Frank Jackson, David Lewis and other proponents of the ‘Canberra plan’. In brief, the proposal is that before 1817 the meaning of the term ‘continuous’ was determined by a number of ‘platitudes’ which had some (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)On a Subtheory of the Bernays‐Gödel Set Theory.Jannis Manakos - 1989 - Mathematical Logic Quarterly 35 (5):413-414.
    Download  
     
    Export citation  
     
    Bookmark  
  • Set theory and physics.K. Svozil - 1995 - Foundations of Physics 25 (11):1541-1560.
    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)An Alternative Way of Avoiding the Set‐Theoretical Paradoxes.H. L. Skala - 1974 - Mathematical Logic Quarterly 20 (13‐18):233-237.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Scientific Theories, Models and the Semantic Approach.Otávio Bueno & Décio Krause - 2007 - Principia: An International Journal of Epistemology 11 (2):187-201.
    According to the semantic view, a theory is characterized by a class of models. In this paper, we examine critically some of the assumptions that underlie this approach. First, we recall that models are models of something. Thus we cannot leave completely aside the axiomatization of the theories under consideration, nor can we ignore the metamathematics used to elaborate these models, for changes in the metamathematics often impose restrictions on the resulting models. Second, based on a parallel between van Fraassen’s (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Deleuze and Mathematics.Simon B. Duffy - 2006 - In Simon Duffy (ed.), Virtual Mathematics: the logic of difference. Clinamen.
    The collection Virtual Mathematics: the logic of difference brings together a range of new philosophical engagements with mathematics, using the work of French philosopher Gilles Deleuze as its focus. Deleuze’s engagements with mathematics rely upon the construction of alternative lineages in the history of mathematics in order to reconfigure particular philosophical problems and to develop new concepts. These alternative conceptual histories also challenge some of the self-imposed limits of the discipline of mathematics, and suggest the possibility of forging new connections (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Russell's vulnerability to Russell's paradox.James Levine - 2001 - History and Philosophy of Logic 22 (4):207-231.
    Influenced by G. E. Moore, Russell broke with Idealism towards the end of 1898; but in later years he characterized his meeting Peano in August 1900 as ?the most important event? in ?the most important year in my intellectual life?. While Russell discovered his paradox during his post-Peano period, the question arises whether he was already committed, during his pre-Peano Moorean period, to assumptions from which his paradox may be derived. Peter Hylton has argued that the pre-Peano Russell was thus (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Completeness and categoricity: Frege, gödel and model theory.Stephen Read - 1997 - History and Philosophy of Logic 18 (2):79-93.
    Frege’s project has been characterized as an attempt to formulate a complete system of logic adequate to characterize mathematical theories such as arithmetic and set theory. As such, it was seen to fail by Gödel’s incompleteness theorem of 1931. It is argued, however, that this is to impose a later interpretation on the word ‘complete’ it is clear from Dedekind’s writings that at least as good as interpretation of completeness is categoricity. Whereas few interesting first-order mathematical theories are categorical or (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Identity, indiscernibility, and philosophical claims.Décio Krause & Antonio Mariano Nogueira Coelho - 2005 - Axiomathes 15 (2):191-210.
    The concept of indiscernibility in a structure is analysed with the aim of emphasizing that in asserting that two objects are indiscernible, it is useful to consider these objects as members of (the domain of) a structure. A case for this usefulness is presented by examining the consequences of this view to the philosophical discussion on identity and indiscernibility in quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Toward a modal-structural interpretation of set theory.Geoffrey Hellman - 1990 - Synthese 84 (3):409 - 443.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Small sets.A. P. Hazen - 1991 - Philosophical Studies 63 (1):119 - 123.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fuzziness of concepts and concepts of fuzziness.Gy Fuhrmann - 1988 - Synthese 75 (3):349 - 372.
    It has been a vexing question in recent years whether concepts are fuzzy. In this paper several views on the fuzziness of concepts are pointed out to have stemmed from dubious concepts of fuzziness. The underlying notions of the roles feasibly played byprototype, set, andprobability in modeling concepts strongly suggest that the controversy originates from a vague relation between intuitive and mathematical ideas in the cognitive sciences. It is argued that the application of fuzzy sets cannot resolve this vagueness since (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Predicates, relations and categories.L. Goddard - 1966 - Australasian Journal of Philosophy 44 (2):139 – 171.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Non-well-founded sets via revision rules.Gian Aldo Antonelli - 1994 - Journal of Philosophical Logic 23 (6):633 - 679.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Set Theory and its Place in the Foundations of Mathematics: A New Look at an Old Question.Mirna Džamonja - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):415-424.
    This paper reviews the claims of several main-stream candidates to be the foundations of mathematics, including set theory. The review concludes that at this level of mathematical knowledge it would be very unreasonable to settle with any one of these foundations and that the only reasonable choice is a pluralist one.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bolzano’s Infinite Quantities.Kateřina Trlifajová - 2018 - Foundations of Science 23 (4):681-704.
    In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply criticized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set theory has eventually prevailed, and became a formal basis of contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ackermann's set theory equals ZF.William N. Reinhardt - 1970 - Annals of Mathematical Logic 2 (2):189.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)A comparison of two recent views on theories.Erhard Scheibe - 1982 - Metamedicine 3 (2):233-253.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Philosophical Impact of the Löwenheim-Skolem Theorem.Miloš Arsenijević - 2011 - In Majda Trobok, Nenad Miščević & Berislav Žarnić (eds.), Between Logic and Reality: Modeling Inference, Action and Understanding. Dordrecht and New York: Springer. pp. 59--81.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is unsaying polite?Berislav Žarnić - 2011 - In Majda Trobok, Nenad Miščević & Berislav Žarnić (eds.), Between Logic and Reality: Modeling Inference, Action and Understanding. Dordrecht and New York: Springer. pp. 201--224.
    This paper is divided in five sections. Section 11.1 sketches the history of the distinction between speech act with negative content and negated speech act, and gives a general dynamic interpretation for negated speech act. “Downdate semantics” for AGM contraction is introduced in Section 11.2. Relying on semantically interpreted contraction, Section 11.3 develops the dynamic semantics for constative and directive speech acts, and their external negations. The expressive completeness for the formal variants of natural language utterances, none of which is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leon Chwistek, The Principles of the Pure Type Theory , translated by Adam Trybus with an Introductory Note by Bernard Linsky.Adam Trybus - 2012 - History and Philosophy of Logic 33 (4):329-352.
    ‘The Principles of the Pure Type Theory’ is a translation of Leon Chwistek's 1922 paper ‘Zasady czystej teorii typów’. It summarizes Chwistek's results from a series of studies of the logic of Whitehead and Russell's Principia Mathematica which were published between 1912 and 1924. Chwistek's main argument involves a criticism of the axiom of reducibility. Moreover, ‘The Principles of the Pure Type Theory’ is a source for Chwistek's views on an issue in Whitehead and Russell's ‘no-class theory of classes’ involving (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On arbitrary sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
    Set theory deals with the most fundamental existence questions in mathematics—questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mengenlehre—Vom Himmel Cantors zur Theoria prima inter pares.Peter Schreiber - 1996 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 4 (1):129-143.
    On the occasion of the 150th birthday of Georg Cantor (1845–1918), the founder of the theory of sets, the development of the logical foundations of this theory is described as a sequence of catastrophes and of trials to save it. Presently, most mathematicians agree that the set theory exactly defines the subject of mathematics, i.e., any subject is a mathematical one if it may be defined in the language (i.e., in the notions) of set theory. Hence the nature of formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ontological Issues in Quantum Theory.Decio Krause & Otavio Bueno - unknown
    In this paper, we examine the concept of particle as it appears in quantum field theories, focusing on a puzzling situation regarding this concept. Although quantum ‘particles’ arise from fields, which form the basic ontology of QFT, and thus a certain concept of ‘particle’ is al- ways available, the properties ascribed to such ‘particles’ are not completely in agreement with the mathematical and logical description of such fields, which should be taken as individuals.
    Download  
     
    Export citation  
     
    Bookmark  
  • An anti-realist account of mathematical truth.Graham Priest - 1983 - Synthese 57 (1):49 - 65.
    The paper gives a semantics for naive (inconsistent) set theory in terms of substitutional quantification. Soundness is proved in an appendix. In the light of this construction, Several philosophical issues are discussed, Including mathematical necessity and the set theoretic paradoxes. Most importantly, It is argued, These semantics allow for a nominalist account of mathematical truth not committed to the existence of a domain of abstract entities.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Realism and formal semantics.David Pearce & Veikko Rantala - 1982 - Synthese 52 (1):39--53.
    The doctrines of scientific realism have enjoyed a close and enduring, if not always harmonious, association with Tarski's semantic conception of truth and theories of formal semantics generally. From its inception Tarski's theory received unqualified support from some realists, like Karl Popper, who saw it as legitimizing the use of semantic notions in epistemology and the philosophy of science.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)A comparison of two recent views on theories.Erhard Scheibe - 1982 - Theoretical Medicine and Bioethics 3 (2):233-253.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Semantics and Truth.Jan Woleński - 2019 - Cham, Switzerland: Springer Verlag.
    The book provides a historical and systematic exposition of the semantic theory of truth formulated by Alfred Tarski in the 1930s. This theory became famous very soon and inspired logicians and philosophers. It has two different, but interconnected aspects: formal-logical and philosophical. The book deals with both, but it is intended mostly as a philosophical monograph. It explains Tarski’s motivation and presents discussions about his ideas as well as points out various applications of the semantic theory of truth to philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Identidade, Indiscernibilidade e Lógica.Kherian Gracher - 2015 - Fundamento 1 (10):21-40.
    Is identity fundamental to formal systems? Even if a system have no the identity relation, is that concept is not assumed in any way – whether in a metalinguistic or intuitive level? In this paper we shall discuss this issue. Otávio Bueno (2014, 2016) argues against the elimination of identity, holding that this concept is fundamental and non-eliminable (even in does systems that claim to do so). Décio Arenhart Krause and Jonas (2015), by the other hand, have a number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why is the universe of sets not a set?Zeynep Soysal - 2017 - Synthese 197 (2):575-597.
    According to the iterative conception of sets, standardly formalized by ZFC, there is no set of all sets. But why is there no set of all sets? A simple-minded, though unpopular, “minimal” explanation for why there is no set of all sets is that the supposition that there is contradicts some axioms of ZFC. In this paper, I first explain the core complaint against the minimal explanation, and then argue against the two main alternative answers to the guiding question. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations