Switch to: References

Citations of:

What is Cantor’s continuum problem?

In Paul Benacerraf & Hilary Putnam (eds.), Philosophy of Mathematics: Selected Readings. Englewood Cliffs, NJ, USA: Cambridge University Press. pp. 470–485 (1964)

Add citations

You must login to add citations.
  1. Mathematics, indispensability and scientific progress.Alan Baker - 2001 - Erkenntnis 55 (1):85-116.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Intuitions as evidence : an introduction.Marc A. Moffett - 2024 - In Maria Lasonen-Aarnio & Clayton Littlejohn (eds.), The Routledge Handbook of the Philosophy of Evidence. New York, NY: Routledge.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical platonism and the causal relevance of abstracta.Barbara Gail Montero - 2022 - Synthese 200 (6):1-18.
    Many mathematicians are platonists: they believe that the axioms of mathematics are true because they express the structure of a nonspatiotemporal, mind independent, realm. But platonism is plagued by a philosophical worry: it is unclear how we could have knowledge of an abstract, realm, unclear how nonspatiotemporal objects could causally affect our spatiotemporal cognitive faculties. Here I aim to make room in our metaphysical picture of the world for the causal relevance of abstracta.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Metaphysical and absolute possibility.Justin Clarke-Doane - 2019 - Synthese 198 (Suppl 8):1861-1872.
    It is widely alleged that metaphysical possibility is “absolute” possibility Conceivability and possibility, Clarendon, Oxford, 2002, p 16; Stalnaker, in: Stalnaker Ways a world might be: metaphysical and anti-metaphysical essays, Oxford University Press, Oxford, 2003, pp 201–215; Williamson in Can J Philos 46:453–492, 2016). Kripke calls metaphysical necessity “necessity in the highest degree”. Van Inwagen claims that if P is metaphysically possible, then it is possible “tout court. Possible simpliciter. Possible period…. possib without qualification.” And Stalnaker writes, “we can agree (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fictionalism and Mathematical Objectivity.Iulian D. Toader - 2012 - In Mircea Dumitru, Mircea Flonta & Valentin Muresan (eds.), Metaphysics and Science. Dedicated to professor Ilie Pârvu. Universty of Bucharest Press. pp. 137-158.
    This paper, written in Romanian, compares fictionalism, nominalism, and neo-Meinongianism as responses to the problem of objectivity in mathematics, and then motivates a fictionalist view of objectivity as invariance.
    Download  
     
    Export citation  
     
    Bookmark  
  • Causal interpretation of Gödel's ontological proof.Srećko Kovač - 2015 - In Kordula Świętorzecka (ed.), Gödel's Ontological Argument: History, Modifications, and Controversies. Semper. pp. 163.201.
    Gödel's ontological argument is related to Gödel's view that causality is the fundamental concept in philosophy. This explicit philosophical intention is developed in the form of an onto-theological Gödelian system based on justification logic. An essentially richer language, so extended, offers the possibility to express new philosophical content. In particular, theorems on the existence of a universal cause on a causal "slingshot" are formulated.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemology versus Non-Causal Realism.Jared Warren - 2017 - Synthese 194 (5).
    This paper formulates a general epistemological argument against what I call non-causal realism, generalizing domain specific arguments by Benacerraf, Field, and others. First I lay out the background to the argument, making a number of distinctions that are sometimes missed in discussions of epistemological arguments against realism. Then I define the target of the argument—non-causal realism—and argue that any non-causal realist theory, no matter the subject matter, cannot be given a reasonable epistemology and so should be rejected. Finally I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • On Why Mathematics Can Not be Ontology.Shiva Rahman - 2019 - Axiomathes 29 (3):289-296.
    The formalism of mathematics has always inspired ontological theorization based on it. As is evident from his magnum opus Being and Event, Alain Badiou remains one of the most important contemporary contributors to this enterprise. His famous maxim—“mathematics is ontology” has its basis in the ingenuity that he has shown in capitalizing on Gödel’s and Cohen’s work in the field of set theory. Their work jointly establish the independence of the continuum hypothesis from the standard axioms of Zermelo–Fraenkel set theory, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Knowledge and Naturalism.Fabio Sterpetti - 2019 - Philosophia 47 (1):225-247.
    How should one conceive of the method of mathematics, if one takes a naturalist stance? Mathematical knowledge is regarded as the paradigm of certain knowledge, since mathematics is based on the axiomatic method. Natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some naturalists try to naturalize mathematics relying on Darwinism. But several difficulties arise when one tries to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Modal Logic and Hyperintensional Semantics for Gödelian Intuition.David Elohim - manuscript
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the modal $\mu$-calculus. Via correspondence results between fixed point modal propositional logic and the bisimulation-invariant fragment of monadic second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Logic and Meaning of Plurals. Part I.Byeong-Uk Yi - 2005 - Journal of Philosophical Logic 34 (5-6):459-506.
    Contemporary accounts of logic and language cannot give proper treatments of plural constructions of natural languages. They assume that plural constructions are redundant devices used to abbreviate singular constructions. This paper and its sequel, "The logic and meaning of plurals, II", aim to develop an account of logic and language that acknowledges limitations of singular constructions and recognizes plural constructions as their peers. To do so, the papers present natural accounts of the logic and meaning of plural constructions that result (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • An empirically feasible approach to the epistemology of arithmetic.Markus Pantsar - 2014 - Synthese 191 (17):4201-4229.
    Recent years have seen an explosion of empirical data concerning arithmetical cognition. In this paper that data is taken to be philosophically important and an outline for an empirically feasible epistemological theory of arithmetic is presented. The epistemological theory is based on the empirically well-supported hypothesis that our arithmetical ability is built on a protoarithmetical ability to categorize observations in terms of quantities that we have already as infants and share with many nonhuman animals. It is argued here that arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Iterative Conception of Set: a (Bi-)Modal Axiomatisation.J. P. Studd - 2013 - Journal of Philosophical Logic 42 (5):1-29.
    The use of tensed language and the metaphor of set ‘formation’ found in informal descriptions of the iterative conception of set are seldom taken at all seriously. Both are eliminated in the nonmodal stage theories that formalise this account. To avoid the paradoxes, such accounts deny the Maximality thesis, the compelling thesis that any sets can form a set. This paper seeks to save the Maximality thesis by taking the tense more seriously than has been customary (although not literally). A (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Thomson's lamp is dysfunctional.William I. McLaughlin - 1998 - Synthese 116 (3):281-301.
    James Thomson envisaged a lamp which would be turned on for 1 minute, off for 1/2 minute, on for 1/4 minute, etc. ad infinitum. He asked whether the lamp would be on or off at the end of 2 minutes. Use of “internal set theory” (a version of nonstandard analysis), developed by Edward Nelson, shows Thomson's lamp is chimerical; its copy within set theory yields a contradiction. The demonstration extends to placing restrictions on other “infinite tasks” such as Zeno's paradoxes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Arithmaetical platonism: Reliability and judgement-dependence.John Divers & Alexander Miller - 1999 - Philosophical Studies 95 (3):277-310.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Platonism and anti‐Platonism: Why worry?Mary Leng - 2005 - International Studies in the Philosophy of Science 19 (1):65 – 84.
    This paper argues that it is scientific realists who should be most concerned about the issue of Platonism and anti-Platonism in mathematics. If one is merely interested in accounting for the practice of pure mathematics, it is unlikely that a story about the ontology of mathematical theories will be essential to such an account. The question of mathematical ontology comes to the fore, however, once one considers our scientific theories. Given that those theories include amongst their laws assertions that imply (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Understanding Delusions: Evidence, Reason, and Experience.Chenwei Nie - 2021 - Dissertation, University of Warwick
    This thesis develops a novel framework for explaining delusions. In Chapter 1, I introduce the two fundamental challenges posed by delusions: the evidence challenge lies in explaining the flagrant ways delusions flout evidence; and the specificity challenge lies in explaining the fact that patients’ delusions are often about a few specific themes, and patients rarely have a wide range of delusional or odd beliefs. In Chapter 2, I discuss the strengths and weaknesses of current theories of delusions, which typically appeal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Objectivity and reliability.Justin Clarke-Doane - 2017 - Canadian Journal of Philosophy 47 (6):841-855.
    Scanlon’s Being Realistic about Reasons (BRR) is a beautiful book – sleek, sophisticated, and programmatic. One of its key aims is to demystify knowledge of normative and mathematical truths. In this article, I develop an epistemological problem that Scanlon fails to explicitly address. I argue that his “metaphysical pluralism” can be understood as a response to that problem. However, it resolves the problem only if it undercuts the objectivity of normative and mathematical inquiry.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Poetique de l'ipse: etude sur le Je pense Kantien.Paulo Jesus - 2008 - Bern: Lang.
    Cet ouvrage propose une réinterprétation originale du rôle cognitif du Je pense kantien qui se veut pertinente pour la phénoménologie et pour la philosophie actuelle de l’esprit. L’étude du rapport entre temporalité phénoménale et cognition catégoriale constitue le fil conducteur de cette recherche. Elle mène à la question capitale du statut ultime du Moi, du sens du Je du Je pense. Que désigne-t-il : un épiphénomène contingent, une représentation sui generis, une métareprésentation, un acte indéconstructible, un événement fonctionnel, une forme (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
    Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of functions. The principle is: for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Theoretical Childhood and Adulthood: Plato’s Account of Human Intellectual Development.Susanna Saracco - 2016 - Philosophia 44 (3):845-863.
    The Platonic description of the cognitive development of the human being is a crucial part of his philosophy. This account emphasizes not only the existence of phases of rational growth but also the need that the cognitive progress of the individuals is investigated further. I will reconstruct what rational growth is for Plato in light of the deliberate choice of the philosopher to leave incomplete his schematization of human intellectual development. I will argue that this is a means chosen by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Monads and Mathematics: Gödel and Husserl.Richard Tieszen - 2012 - Axiomathes 22 (1):31-52.
    In 1928 Edmund Husserl wrote that “The ideal of the future is essentially that of phenomenologically based (“philosophical”) sciences, in unitary relation to an absolute theory of monads” (“Phenomenology”, Encyclopedia Britannica draft) There are references to phenomenological monadology in various writings of Husserl. Kurt Gödel began to study Husserl’s work in 1959. On the basis of his later discussions with Gödel, Hao Wang tells us that “Gödel’s own main aim in philosophy was to develop metaphysics—specifically, something like the monadology of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical explanation: Problems and prospects.Paolo Mancosu - 2001 - Topoi 20 (1):97-117.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Intellectual humility in mathematics.Colin Jakob Rittberg - unknown - Synthese 199 (3-4):5571-5601.
    In this paper I explore how intellectual humility manifests in mathematical practices. To do this I employ accounts of this virtue as developed by virtue epistemologists in three case studies of mathematical activity. As a contribution to a Topical Collection on virtue theory of mathematical practices this paper explores in how far existing virtue-theoretic frameworks can be applied to a philosophical analysis of mathematical practices. I argue that the individual accounts of intellectual humility are successful at tracking some manifestations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The significance of a non-reductionist ontology for the discipline of mathematics: A historical and systematic analysis. [REVIEW]D. F. M. Strauss - 2010 - Axiomathes 20 (1):19-52.
    A Christian approach to scholarship, directed by the central biblical motive of creation, fall and redemption and guided by the theoretical idea that God subjected all of creation to His Law-Word, delimiting and determining the cohering diversity we experience within reality, in principle safe-guards those in the grip of this ultimate commitment and theoretical orientation from absolutizing or deifying anything within creation. In this article my over-all approach is focused on the one-sided legacy of mathematics, starting with Pythagorean arithmeticism (“everything (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indispensability and explanation: an overview and introduction.Daniele Molinini, Fabrice Pataut & Andrea Sereni - 2016 - Synthese 193 (2):317-332.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Reason and intuition.Charles Parsons - 2000 - Synthese 125 (3):299-315.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Understanding programming languages.Raymond Turner - 2007 - Minds and Machines 17 (2):203-216.
    We document the influence on programming language semantics of the Platonism/formalism divide in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Erratum to: Intuition and Its Object.Kai Hauser - 2015 - Axiomathes 25 (3):283-284.
    Erratum to: Axiomathes DOI 10.1007/s10516-014-9234-yIn the original publication of the article, some of the references were published incorrectly. Please find below the corrected version of these references.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification of mathematical theories.Krzysztof Wójtowicz - 1998 - Foundations of Science 3 (2):207-229.
    In this article the problem of unification of mathematical theories is discussed. We argue, that specific problems arise here, which are quite different than the problems in the case of empirical sciences. In particular, the notion of unification depends on the philosophical standpoint. We give an analysis of the notion of unification from the point of view of formalism, Gödel's platonism and Quine's realism. In particular we show, that the concept of “having the same object of study” should be made (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetic, enumerative induction and size bias.A. C. Paseau - 2021 - Synthese 199 (3-4):9161-9184.
    Number theory abounds with conjectures asserting that every natural number has some arithmetic property. An example is Goldbach’s Conjecture, which states that every even number greater than 2 is the sum of two primes. Enumerative inductive evidence for such conjectures usually consists of small cases. In the absence of supporting reasons, mathematicians mistrust such evidence for arithmetical generalisations, more so than most other forms of non-deductive evidence. Some philosophers have also expressed scepticism about the value of enumerative inductive evidence in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations