Switch to: References

Add citations

You must login to add citations.
  1. Henkin sentences and local reflection principles for Rosser provability.Taishi Kurahashi - 2016 - Annals of Pure and Applied Logic 167 (2):73-94.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Self-Reference in Arithmetic II.Volker Halbach & Albert Visser - 2014 - Review of Symbolic Logic 7 (4):692-712.
    In this sequel toSelf-reference in arithmetic Iwe continue our discussion of the question: What does it mean for a sentence of arithmetic to ascribe to itself a property? We investigate how the properties of the supposedly self-referential sentences depend on the chosen coding, the formulae expressing the properties and the way a fixed point for the expressing formulae are obtained. In this second part we look at some further examples. In particular, we study sentences apparently expressing their Rosser-provability, their own${\rm{\Sigma (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Arithmetics of a Theory.Albert Visser - 2015 - Notre Dame Journal of Formal Logic 56 (1):81-119.
    In this paper we study the interpretations of a weak arithmetic, like Buss’s theory $\mathsf{S}^{1}_{2}$, in a given theory $U$. We call these interpretations the arithmetics of $U$. We develop the basics of the structure of the arithmetics of $U$. We study the provability logic of $U$ from the standpoint of the framework of the arithmetics of $U$. Finally, we provide a deeper study of the arithmetics of a finitely axiomatized sequential theory.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Uniform Density in Lindenbaum Algebras.V. Yu Shavrukov & Albert Visser - 2014 - Notre Dame Journal of Formal Logic 55 (4):569-582.
    In this paper we prove that the preordering $\lesssim $ of provable implication over any recursively enumerable theory $T$ containing a modicum of arithmetic is uniformly dense. This means that we can find a recursive extensional density function $F$ for $\lesssim $. A recursive function $F$ is a density function if it computes, for $A$ and $B$ with $A\lnsim B$, an element $C$ such that $A\lnsim C\lnsim B$. The function is extensional if it preserves $T$-provable equivalence. Secondly, we prove a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the proof of Solovay's theorem.Dick de Jongh, Marc Jumelet & Franco Montagna - 1991 - Studia Logica 50 (1):51-69.
    Solovay's 1976 completeness result for modal provability logic employs the recursion theorem in its proof. It is shown that the uses of the recursion theorem can in this proof replaced by the diagonalization lemma for arithmetic and that, in effect, the proof neatly fits the framework of another, enriched, system of modal logic so that any arithmetical system for which this logic is sound is strong enough to carry out the proof, in particular $\text{I}\Delta _{0}+\text{EXP}$ . The method is adapted (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The logic of π1-conservativity.Petr Hajek & Franco Montagna - 1990 - Archive for Mathematical Logic 30 (2):113-123.
    We show that the modal prepositional logicILM (interpretability logic with Montagna's principle), which has been shown sound and complete as the interpretability logic of Peano arithmetic PA (by Berarducci and Savrukov), is sound and complete as the logic ofπ 1-conservativity over eachbE 1-sound axiomatized theory containingI⌆ 1 (PA with induction restricted tobE 1-formulas). Furthermore, we extend this result to a systemILMR obtained fromILM by adding witness comparisons in the style of Guaspari's and Solovay's logicR (this will be done in a (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Rosser-Type Undecidable Sentences Based on Yablo’s Paradox.Taishi Kurahashi - 2014 - Journal of Philosophical Logic 43 (5):999-1017.
    It is widely considered that Gödel’s and Rosser’s proofs of the incompleteness theorems are related to the Liar Paradox. Yablo’s paradox, a Liar-like paradox without self-reference, can also be used to prove Gödel’s first and second incompleteness theorems. We show that the situation with the formalization of Yablo’s paradox using Rosser’s provability predicate is different from that of Rosser’s proof. Namely, by using the technique of Guaspari and Solovay, we prove that the undecidability of each instance of Rosser-type formalizations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Faith & falsity.Albert Visser - 2004 - Annals of Pure and Applied Logic 131 (1-3):103-131.
    A theory T is trustworthy iff, whenever a theory U is interpretable in T, then it is faithfully interpretable. In this paper we give a characterization of trustworthiness. We provide a simple proof of Friedman’s Theorem that finitely axiomatized, sequential, consistent theories are trustworthy. We provide an example of a theory whose schematic predicate logic is complete Π20.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A small reflection principle for bounded arithmetic.Rineke Verbrugge & Albert Visser - 1994 - Journal of Symbolic Logic 59 (3):785-812.
    We investigate the theory IΔ 0 + Ω 1 and strengthen [Bu86. Theorem 8.6] to the following: if NP ≠ co-NP. then Σ-completeness for witness comparison formulas is not provable in bounded arithmetic. i.e. $I\delta_0 + \Omega_1 + \nvdash \forall b \forall c (\exists a(\operatorname{Prf}(a.c) \wedge \forall = \leq a \neg \operatorname{Prf} (z.b))\\ \rightarrow \operatorname{Prov} (\ulcorner \exists a(\operatorname{Prf}(a. \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z.\bar{b})) \urcorner)).$ Next we study a "small reflection principle" in bounded arithmetic. We prove that for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the proof of Solovay's theorem.Dick Jongh, Marc Jumelet & Franco Montagna - 1991 - Studia Logica 50 (1):51 - 69.
    Solovay's 1976 completeness result for modal provability logic employs the recursion theorem in its proof. It is shown that the uses of the recursion theorem can in this proof be replaced by the diagonalization lemma for arithmetic and that, in effect, the proof neatly fits the framework of another, enriched, system of modal logic (the so-called Rosser logic of Gauspari-Solovay, 1979) so that any arithmetical system for which this logic is sound is strong enough to carry out the proof, in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Finding the limit of incompleteness I.Yong Cheng - 2020 - Bulletin of Symbolic Logic 26 (3-4):268-286.
    In this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem. We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ and $\textsf (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel’s Second Incompleteness Theorem: How It is Derived and What It Delivers.Saeed Salehi - 2020 - Bulletin of Symbolic Logic 26 (3-4):241-256.
    The proofs of Gödel (1931), Rosser (1936), Kleene (first 1936 and second 1950), Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with each other, especially from the viewpoint of the second incompleteness theorem. It is shown that Gödel’s (first incompleteness theorem) and Kleene’s first theorems are equivalent with the second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second incompleteness theorem, and Boolos’ theorem is derived from the second incompleteness theorem in the standard way. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Simplification of a Completeness Proof of Guaspari and Solovay.Dick H. J. de Jongh - 1987 - Studia Logica 46 (2):187-192.
    The modal completeness proofs of Guaspari and Solovay for their systems R and R⁻ are improved and the relationship between R and R⁻ is clarified.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the provability logic of bounded arithmetic.Rineke Verbrugge & Alessandro Berarducci - 1991 - Annals of Pure and Applied Logic 61 (1-2):75-93.
    Let PLω be the provability logic of IΔ0 + ω1. We prove some containments of the form L ⊆ PLω < Th(C) where L is the provability logic of PA and Th(C) is a suitable class of Kripke frames.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Yablifying the Rosser Sentence.Graham Leach-Krouse - 2014 - Journal of Philosophical Logic 43 (5):827-834.
    In a recent paper , Urbaniak and Cieśliński describe an analogue of the Yablo Paradox, in the domain of formal provability. Just as the infinite sequence of Yablo sentences inherit the paradoxical behavior of the liar sentence, an infinite sequence of sentences can be constructed that inherit the distinctive behavior of the Gödel sentence. This phenomenon—the transfer of the properties of self-referential sentences of formal mathematics to their “unwindings” into infinite sequences of sentences—suggests a number of interesting logical questions. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Polynomially and superexponentially shorter proofs in fragments of arithmetic.Franco Montagna - 1992 - Journal of Symbolic Logic 57 (3):844-863.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A note on some extension results.Franco Montagna & Giovanni Sommaruga - 1990 - Studia Logica 49 (4):591 - 600.
    In this note, a fully modal proof is given of some conservation results proved in a previous paper by arithmetic means. The proof is based on the extendability of Kripke models.
    Download  
     
    Export citation  
     
    Bookmark  
  • Illusory models of peano arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Symbolic Logic 81 (3):1163-1175.
    By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a modelMof PA. We say a modelMof PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane ifM⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane modelNof PA. We firstly show thatMis heterodox if and only if it is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Short Note on Essentially Σ1 Sentences.Franco Montagna & Duccio Pianigiani - 2013 - Logica Universalis 7 (1):103-111.
    Guaspari (J Symb Logic 48:777–789, 1983) conjectured that a modal formula is it essentially Σ1 (i.e., it is Σ1 under any arithmetical interpretation), if and only if it is provably equivalent to a disjunction of formulas of the form ${\square{B}}$ . This conjecture was proved first by A. Visser. Then, in (de Jongh and Pianigiani, Logic at Work: In Memory of Helena Rasiowa, Springer-Physica Verlag, Heidelberg-New York, pp. 246–255, 1999), the authors characterized essentially Σ1 formulas of languages including witness comparisons (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Provability logic-a short introduction.Per Lindström - 1996 - Theoria 62 (1-2):19-61.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On an alleged refutation of Hilbert's program using gödel's first incompleteness theorem.Michael Detlefsen - 1990 - Journal of Philosophical Logic 19 (4):343 - 377.
    It is argued that an instrumentalist notion of proof such as that represented in Hilbert's viewpoint is not obligated to satisfy the conservation condition that is generally regarded as a constraint on Hilbert's Program. A more reasonable soundness condition is then considered and shown not to be counter-exemplified by Godel's First Theorem. Finally, attention is given to the question of what a theory is; whether it should be seen as a "list" or corpus of beliefs, or as a method for (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Comparing strengths of beliefs explicitly.S. Ghosh & D. de Jongh - 2013 - Logic Journal of the IGPL 21 (3):488-514.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modal analysis of generalized Rosser sentences.Vítězslav Švejdar - 1983 - Journal of Symbolic Logic 48 (4):986-999.
    A modal theory Z using the Guaspari witness comparison signs $\leq, is developed. The theory Z is similar to, but weaker than, the theory R of Guaspari and Solovay. Nevertheless, Z proves the independence of the Rosser fixed-point. A Kripke semantics for Z is presented and some arithmetical interpretations of Z are investigated. Then Z is enriched to ZI by adding a new modality sign for interpretability and by axioms expressing some facts about interpretability of theories. Two arithmetical interpretations of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Arithmetical completeness theorems for monotonic modal logics.Haruka Kogure & Taishi Kurahashi - 2023 - Annals of Pure and Applied Logic 174 (7):103271.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic of proofs.Sergei Artëmov - 1994 - Annals of Pure and Applied Logic 67 (1-3):29-59.
    In this paper individual proofs are integrated into provability logic. Systems of axioms for a logic with operators “A is provable” and “p is a proof of A” are introduced, provided with Kripke semantics and decision procedure. Completeness theorems with respect to the arithmetical interpretation are proved.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • A remark on equivalent Rosser sentences.Christopher von Bülow - 2008 - Annals of Pure and Applied Logic 151 (1):62-67.
    An oversight in Guaspari and Solovay’s “Rosser sentences” [D. Guaspari, R.M. Solovay, Rosser sentences, Annals of Mathematical Logic 16 81–99] is pointed out and emended. It concerns the premisses of their proof that there are standard proof predicates all of whose Rosser sentences are provably equivalent. The result holds up, but the premisses mentioned in the paper have to be strengthened somewhat.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Generic generalized Rosser fixed points.Dick H. J. Jongh & Franco Montagna - 1987 - Studia Logica 46 (2):193 - 203.
    To the standard propositional modal system of provability logic constants are added to account for the arithmetical fixed points introduced by Bernardi-Montagna in [5]. With that interpretation in mind, a system LR of modal propositional logic is axiomatized, a modal completeness theorem is established for LR and, after that, a uniform arithmetical (Solovay-type) completeness theorem with respect to PA is obtained for LR.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Friedman-reflexivity.Albert Visser - 2022 - Annals of Pure and Applied Logic 173 (9):103160.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Short Stories around Gödel's Incompleteness Theorems.Makoto Kikuchi & Taishi Kurahashi - 2011 - Journal of the Japan Association for Philosophy of Science 38 (2):75-80.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Rosser and mostowski sentences.Franco Montagna & Giovanni Sommaruga - 1988 - Archive for Mathematical Logic 27 (2):115-133.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sentences implying their own provability.David Guaspari - 1983 - Journal of Symbolic Logic 48 (3):777-789.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Guaspari's problem about partially conservative sentences.Taishi Kurahashi, Yuya Okawa, V. Yu Shavrukov & Albert Visser - 2022 - Annals of Pure and Applied Logic 173 (5):103087.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic Generalized Rosser Fixed Points.Dick H. J. de Jongh & Franco Montagna - 1987 - Studia Logica 46 (2):193-203.
    To the standard propositional modal system of provability logic constants are added to account for the arithmetical fixed points introduced by Bernardi-Montagna in [5]. With that interpretation in mind, a system LR of modal propositional logic is axiomatized, a modal completeness theorem is established for LR and, after that, a uniform arithmetical completeness theorem with respect to PA is obtained for LR.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Rosser orderings and free variables.Dick Jongh & Franco Montagna - 1991 - Studia Logica 50 (1):71 - 80.
    It is shown that for arithmetical interpretations that may include free variables it is not the Guaspari-Solovay system R that is arithmetically complete, but their system R –. This result is then applied to obtain the nonvalidity of some rules under arithmetical interpretations including free variables, and to show that some principles concerning Rosser orderings with free variables cannot be decided, even if one restricts oneself to usual proof predicates.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bimodal logics for extensions of arithmetical theories.Lev D. Beklemishev - 1996 - Journal of Symbolic Logic 61 (1):91-124.
    We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of (IΔ 0 + EXP, PRA); (PRA, IΣ 1 ); (IΣ m , IΣ n ) for $1 \leq m etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Universal Rosser predicates.Makoto Kikuchi & Taishi Kurahashi - 2017 - Journal of Symbolic Logic 82 (1):292-302.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A simplification of a completeness proof of Guaspari and Solovay.Dick H. J. Jongh - 1987 - Studia Logica 46 (2):187 - 192.
    The modal completeness proofs of Guaspari and Solovay (1979) for their systems R and R – are improved and the relationship between R and R – is clarified.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The early history of formal diagonalization.C. Smoryński - 2023 - Logic Journal of the IGPL 31 (6):1203-1224.
    In Honour of John Crossley’s 85th Birthday.
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)European Summer Meeting of the Association for Symbolic Logic, , Granada, Spain, 1987.H. -D. Ebbinghaus, J. Fernández-Prida, M. Garrido, D. Lascar & M. Rodriguez Artalejo - 1989 - Journal of Symbolic Logic 54 (2):647-672.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rosser Provability and Normal Modal Logics.Taishi Kurahashi - 2020 - Studia Logica 108 (3):597-617.
    In this paper, we investigate Rosser provability predicates whose provability logics are normal modal logics. First, we prove that there exists a Rosser provability predicate whose provability logic is exactly the normal modal logic \. Secondly, we introduce a new normal modal logic \ which is a proper extension of \, and prove that there exists a Rosser provability predicate whose provability logic includes \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Provability in finite subtheories of pa and relative interpretability: A modal investigation.Franco Montagna - 1987 - Journal of Symbolic Logic 52 (2):494-511.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Rosser's provability predicates.Taishi Kurahashi - 2014 - Journal of the Japan Association for Philosophy of Science 41 (2):93-101.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rosser orderings and free variables.Dick de Jongh & Franco Montagna - 1991 - Studia Logica 50 (1):71-80.
    It is shown that for arithmetical interpretations that may include free variables it is not the Guaspari-Solovay system R that is arithmetically complete, but their system R⁻. This result is then applied to obtain the nonvalidity of some rules under arithmetical interpretations including free variables, and to show that some principles concerning Rosser orderings with free variables cannot be decided, even if one restricts onself to "usual" proof predicates.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some Observations on the FGH Theorem.Taishi Kurahashi - 2023 - Studia Logica 111 (5):749-778.
    We investigate the Friedman–Goldfarb–Harrington theorem from two perspectives. Firstly, in the frameworks of classical and modal propositional logics, we study the forms of sentences whose existence is guaranteed by the FGH theorem. Secondly, we prove some variations of the FGH theorem with respect to Rosser provability predicates.
    Download  
     
    Export citation  
     
    Bookmark