Switch to: References

Add citations

You must login to add citations.
  1. Disciplining Deliberation: A Socio-technical Perspective on Machine Learning Trade-Offs.Sina Fazelpour - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Capability Approach to AI Ethics.Emanuele Ratti & Mark Graves - 2025 - American Philosophical Quarterly 62 (1):1-16.
    We propose a conceptualization and implementation of AI ethics via the capability approach. We aim to show that conceptualizing AI ethics through the capability approach has two main advantages for AI ethics as a discipline. First, it helps clarify the ethical dimension of AI tools. Second, it provides guidance to implementing ethical considerations within the design of AI tools. We illustrate these advantages in the context of AI tools in medicine, by showing how ethics-based auditing of AI tools in medicine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Bias Network Approach (BNA) to Encourage Ethical Reflection Among AI Developers.Gabriela Arriagada-Bruneau, Claudia López & Alexandra Davidoff - 2024 - Science and Engineering Ethics 31 (1):1-29.
    We introduce the Bias Network Approach (BNA) as a sociotechnical method for AI developers to identify, map, and relate biases across the AI development process. This approach addresses the limitations of what we call the "isolationist approach to AI bias," a trend in AI literature where biases are seen as separate occurrence linked to specific stages in an AI pipeline. Dealing with these multiple biases can trigger a sense of excessive overload in managing each potential bias individually or promote the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Broomean(ish) Algorithmic Fairness?Clinton Castro - forthcoming - Journal of Applied Philosophy.
    Recently, there has been much discussion of ‘fair machine learning’: fairness in data-driven decision-making systems (which are often, though not always, made with assistance from machine learning systems). Notorious impossibility results show that we cannot have everything we want here. Such problems call for careful thinking about the foundations of fair machine learning. Sune Holm has identified one promising way forward, which involves applying John Broome's theory of fairness to the puzzles of fair machine learning. Unfortunately, his application of Broome's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tool, Collaborator, or Participant: AI and Artistic Agency.Anthony Cross - forthcoming - British Journal of Aesthetics.
    Artificial intelligence is now capable of generating sophisticated and compelling images from simple text prompts. In this paper, I focus specifically on how artists might make use of AI to create art. Most existing discourse analogizes AI to a tool or collaborator; this focuses our attention on AI’s contribution to the production of an artistically significant output. I propose an alternative approach, the exploration paradigm, which suggests that artists instead relate to AI as a participant: artists create a space for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophical Investigations into AI Alignment: A Wittgensteinian Framework.José Antonio Pérez-Escobar & Deniz Sarikaya - 2024 - Philosophy and Technology 37 (3):1-25.
    We argue that the later Wittgenstein’s philosophy of language and mathematics, substantially focused on rule-following, is relevant to understand and improve on the Artificial Intelligence (AI) alignment problem: his discussions on the categories that influence alignment between humans can inform about the categories that should be controlled to improve on the alignment problem when creating large data sets to be used by supervised and unsupervised learning algorithms, as well as when introducing hard coded guardrails for AI models. We cast these (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Human Autonomy at Risk? An Analysis of the Challenges from AI.Carina Prunkl - 2024 - Minds and Machines 34 (3):1-21.
    Autonomy is a core value that is deeply entrenched in the moral, legal, and political practices of many societies. The development and deployment of artificial intelligence (AI) have raised new questions about AI’s impacts on human autonomy. However, systematic assessments of these impacts are still rare and often held on a case-by-case basis. In this article, I provide a conceptual framework that both ties together seemingly disjoint issues about human autonomy, as well as highlights differences between them. In the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Owning Decisions: AI Decision-Support and the Attributability-Gap.Jannik Zeiser - 2024 - Science and Engineering Ethics 30 (4):1-19.
    Artificial intelligence (AI) has long been recognised as a challenge to responsibility. Much of this discourse has been framed around robots, such as autonomous weapons or self-driving cars, where we arguably lack control over a machine’s behaviour and therefore struggle to identify an agent that can be held accountable. However, most of today’s AI is based on machine-learning technology that does not act on its own, but rather serves as a decision-support tool, automatically analysing data to help human agents make (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kantian Ethics and the Attention Economy.Timothy Aylsworth & Clinton Castro - 2024 - Palgrave Macmillan.
    In this open access book, Timothy Aylsworth and Clinton Castro draw on the deep well of Kantian ethics to argue that we have moral duties, both to ourselves and to others, to protect our autonomy from the threat posed by the problematic use of technology. The problematic use of technologies like smartphones threatens our autonomy in a variety of ways, and critics have only begun to appreciate the vast scope of this problem. In the last decade, we have seen a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Duty to Promote Digital Minimalism in Group Agents.Timothy Aylsworth & Clinton Castro - 2024 - In Timothy Aylsworth & Clinton Castro (eds.), Kantian Ethics and the Attention Economy. Palgrave Macmillan.
    In this chapter, we turn our attention to the effects of the attention economy on our ability to act autonomously as a group. We begin by clarifying which sorts of groups we are concerned with, which are structured groups (groups sufficiently organized that it makes sense to attribute agency to the group itself). Drawing on recent work by Purves and Davis (2022), we describe the essential roles of trust (i.e., depending on groups to fulfill their commitments) and trustworthiness (i.e., the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Disambiguating Algorithmic Bias: From Neutrality to Justice.Elizabeth Edenberg & Alexandra Wood - 2023 - In Francesca Rossi, Sanmay Das, Jenny Davis, Kay Firth-Butterfield & Alex John (eds.), AIES '23: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery. pp. 691-704.
    As algorithms have become ubiquitous in consequential domains, societal concerns about the potential for discriminatory outcomes have prompted urgent calls to address algorithmic bias. In response, a rich literature across computer science, law, and ethics is rapidly proliferating to advance approaches to designing fair algorithms. Yet computer scientists, legal scholars, and ethicists are often not speaking the same language when using the term ‘bias.’ Debates concerning whether society can or should tackle the problem of algorithmic bias are hampered by conflations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fair equality of chances for prediction-based decisions.Michele Loi, Anders Herlitz & Hoda Heidari - 2024 - Economics and Philosophy 40 (3):557-580.
    This article presents a fairness principle for evaluating decision-making based on predictions: a decision rule is unfair when the individuals directly impacted by the decisions who are equal with respect to the features that justify inequalities in outcomes do not have the same statistical prospects of being benefited or harmed by them, irrespective of their socially salient morally arbitrary traits. The principle can be used to evaluate prediction-based decision-making from the point of view of a wide range of antecedently specified (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against the singularity hypothesis.David Thorstad - forthcoming - Philosophical Studies:1-25.
    The singularity hypothesis is a radical hypothesis about the future of artificial intelligence on which self-improving artificial agents will quickly become orders of magnitude more intelligent than the average human. Despite the ambitiousness of its claims, the singularity hypothesis has been defended at length by leading philosophers and artificial intelligence researchers. In this paper, I argue that the singularity hypothesis rests on scientifically implausible growth assumptions. I show how leading philosophical defenses of the singularity hypothesis (Chalmers 2010, Bostrom 2014) fail (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the site of predictive justice.Seth Lazar & Jake Stone - 2024 - Noûs 58 (3):730-754.
    Optimism about our ability to enhance societal decision‐making by leaning on Machine Learning (ML) for cheap, accurate predictions has palled in recent years, as these ‘cheap’ predictions have come at significant social cost, contributing to systematic harms suffered by already disadvantaged populations. But what precisely goes wrong when ML goes wrong? We argue that, as well as more obvious concerns about the downstream effects of ML‐based decision‐making, there can be moral grounds for the criticism of these predictions themselves. We introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dirty data labeled dirt cheap: epistemic injustice in machine learning systems.Gordon Hull - 2023 - Ethics and Information Technology 25 (3):1-14.
    Artificial intelligence (AI) and machine learning (ML) systems increasingly purport to deliver knowledge about people and the world. Unfortunately, they also seem to frequently present results that repeat or magnify biased treatment of racial and other vulnerable minorities. This paper proposes that at least some of the problems with AI’s treatment of minorities can be captured by the concept of epistemic injustice. To substantiate this claim, I argue that (1) pretrial detention and physiognomic AI systems commit testimonial injustice because their (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hammer or Measuring Tape? Artificial Intelligence and Justice in Healthcare.Jan-Hendrik Heinrichs - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3):311-322.
    Artificial intelligence (AI) is a powerful tool for several healthcare tasks. AI tools are suited to optimize predictive models in medicine. Ethical debates about AI’s extension of the predictive power of medical models suggest a need to adapt core principles of medical ethics. This article demonstrates that a popular interpretation of the principle of justice in healthcare needs amendment given the effect of AI on decision-making. The procedural approach to justice, exemplified with Norman Daniels and James Sabin’s accountability for reasonableness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are You Anthropomorphizing AI?Ali Hasan - 2024 - Blog of the American Philosophical Association.
    I argue that, given the way that AI models work and the way that ordinary human rationality works, it is very likely that people are anthropomorphizing AI, with potentially serious consequences. There are good reasons to doubt that LLMs have anything like human understanding, and even if they have representations or meaningful contents in some sense, these are unlikely to correspond to our ordinary understanding of natural language. However, there are natural, and in some ways quite rational, pressures to anthropomorphize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Three Lessons For and From Algorithmic Discrimination.Frej Klem Thomsen - 2023 - Res Publica (2):1-23.
    Algorithmic discrimination has rapidly become a topic of intense public and academic interest. This article explores three issues raised by algorithmic discrimination: 1) the distinction between direct and indirect discrimination, 2) the notion of disadvantageous treatment, and 3) the moral badness of discriminatory automated decision-making. It argues that some conventional distinctions between direct and indirect discrimination appear not to apply to algorithmic discrimination, that algorithmic discrimination may often be discrimination between groups, as opposed to against groups, and that it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic neutrality.Milo Phillips-Brown - manuscript
    Algorithms wield increasing control over our lives—over the jobs we get, the loans we're granted, the information we see online. Algorithms can and often do wield their power in a biased way, and much work has been devoted to algorithmic bias. In contrast, algorithmic neutrality has been largely neglected. I investigate algorithmic neutrality, tackling three questions: What is algorithmic neutrality? Is it possible? And when we have it in mind, what can we learn about algorithmic bias?
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algorithmic Political Bias in Artificial Intelligence Systems.Uwe Peters - 2022 - Philosophy and Technology 35 (2):1-23.
    Some artificial intelligence systems can display algorithmic bias, i.e. they may produce outputs that unfairly discriminate against people based on their social identity. Much research on this topic focuses on algorithmic bias that disadvantages people based on their gender or racial identity. The related ethical problems are significant and well known. Algorithmic bias against other aspects of people’s social identity, for instance, their political orientation, remains largely unexplored. This paper argues that algorithmic bias against people’s political orientation can arise in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Towards a Critical Social Epistemology of Social Media.Joshua Habgood-Coote - 2025 - In Jennifer Lackey & Aidan McGlynn (eds.), Oxford Handbook of Social Epistemology. Oxford University Press.
    What are the proper epistemic aims of social media sites? A great deal of social media critique presupposes an exceptionalist attitude, according to which social media is either uniquely good, or uniquely bad for our collective knowledge-generating practices. Exceptionalism about social media is troublesome, both because it leads to oversimplistic narratives, and because it prevents us making relevant comparisons to other epistemic systems. The goal of this chapter is to offer an anti-exceptionalist account of the epistemic aims of social media. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algorithms Advise, Humans Decide: the Evidential Role of the Patient Preference Predictor.Nicholas Makins - forthcoming - Journal of Medical Ethics.
    An AI-based “patient preference predictor” (PPP) is a proposed method for guiding healthcare decisions for patients who lack decision-making capacity. The proposal is to use correlations between sociodemographic data and known healthcare preferences to construct a model that predicts the unknown preferences of a particular patient. In this paper, I highlight a distinction that has been largely overlooked so far in debates about the PPP–that between algorithmic prediction and decision-making–and argue that much of the recent philosophical disagreement stems from this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exploitative informing.David Thorstad - forthcoming - British Journal for the Philosophy of Science.
    Informing others about the world is often a helpful act. In this paper, I study agents who conduct experiments to gather information about the world, committing in advance to fully disclose the nature of the experiment together with all experimental findings. While this appears to be a benign activity, I characterize a type of exploitative informing that is possible even within this restricted setup. I show how exploitative informants use public experiments to predictably manipulate interlocutors’ beliefs and actions to their (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rawlsian Algorithmic Fairness and a Missing Aggregation Property of the Difference Principle.Ulrik Franke - 2024 - Philosophy and Technology 37 (3):1-19.
    Modern society makes extensive use of automated algorithmic decisions, fueled by advances in artificial intelligence. However, since these systems are not perfect, questions about fairness are increasingly investigated in the literature. In particular, many authors take a Rawlsian approach to algorithmic fairness. Based on complications with this approach identified in the literature, this article discusses how Rawls’s theory in general, and especially the difference principle, should reasonably be applied to algorithmic fairness decisions. It is observed that proposals to achieve Rawlsian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Fair Chances in Algorithmic Fairness: A Response to Holm.Clinton Castro & Michele Loi - 2023 - Res Publica 29 (2):231–237.
    Holm (2022) argues that a class of algorithmic fairness measures, that he refers to as the ‘performance parity criteria’, can be understood as applications of John Broome’s Fairness Principle. We argue that the performance parity criteria cannot be read this way. This is because in the relevant context, the Fairness Principle requires the equalization of actual individuals’ individual-level chances of obtaining some good (such as an accurate prediction from a predictive system), but the performance parity criteria do not guarantee any (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Algorithmic Fairness and the Situated Dynamics of Justice.Sina Fazelpour, Zachary C. Lipton & David Danks - 2022 - Canadian Journal of Philosophy 52 (1):44-60.
    Machine learning algorithms are increasingly used to shape high-stake allocations, sparking research efforts to orient algorithm design towards ideals of justice and fairness. In this research on algorithmic fairness, normative theorizing has primarily focused on identification of “ideally fair” target states. In this paper, we argue that this preoccupation with target states in abstraction from the situated dynamics of deployment is misguided. We propose a framework that takes dynamic trajectories as direct objects of moral appraisal, highlighting three respects in which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Can AI-Based Decisions be Genuinely Public? On the Limits of Using AI-Algorithms in Public Institutions.Alon Harel & Gadi Perl - 2024 - Jus Cogens 6 (1):47-64.
    AI-based algorithms are used extensively by public institutions. Thus, for instance, AI algorithms have been used in making decisions concerning punishment providing welfare payments, making decisions concerning parole, and many other tasks which have traditionally been assigned to public officials and/or public entities. We develop a novel argument against the use of AI algorithms, in particular with respect to decisions made by public officials and public entities. We argue that decisions made by AI algorithms cannot count as public decisions, namely (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Justice, Vulnerable Populations, and the Use of Conversational AI in Psychotherapy.Bennett Knox, Pierce Christoffersen, Kalista Leggitt, Zeia Woodruff & Matthew H. Haber - 2023 - American Journal of Bioethics 23 (5):48-50.
    Sedlakova and Trachsel (2023) identify a major benefit of conversational artificial intelligence (CAI) in psychotherapy as its ability to expand access to mental healthcare for vulnerable populatio...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • To Each Technology Its Own Ethics: The Problem of Ethical Proliferation.Henrik Skaug Sætra & John Danaher - 2022 - Philosophy and Technology 35 (4):1-26.
    Ethics plays a key role in the normative analysis of the impacts of technology. We know that computers in general and the processing of data, the use of artificial intelligence, and the combination of computers and/or artificial intelligence with robotics are all associated with ethically relevant implications for individuals, groups, and society. In this article, we argue that while all technologies are ethically relevant, there is no need to create a separate ‘ethics of X’ or ‘X ethics’ for each and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Enabling Fairness in Healthcare Through Machine Learning.Geoff Keeling & Thomas Grote - 2022 - Ethics and Information Technology 24 (3):1-13.
    The use of machine learning systems for decision-support in healthcare may exacerbate health inequalities. However, recent work suggests that algorithms trained on sufficiently diverse datasets could in principle combat health inequalities. One concern about these algorithms is that their performance for patients in traditionally disadvantaged groups exceeds their performance for patients in traditionally advantaged groups. This renders the algorithmic decisions unfair relative to the standard fairness metrics in machine learning. In this paper, we defend the permissible use of affirmative algorithms; (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algorithmic Political Bias—an Entrenchment Concern.Ulrik Franke - 2022 - Philosophy and Technology 35 (3):1-6.
    This short commentary on Peters identifies the entrenchment of political positions as one additional concern related to algorithmic political bias, beyond those identified by Peters. First, it is observed that the political positions detected and predicted by algorithms are typically contingent and largely explained by “political tribalism”, as argued by Brennan. Second, following Hacking, the social construction of political identities is analyzed and it is concluded that algorithmic political bias can contribute to such identities. Third, following Nozick, it is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Diversity in sociotechnical machine learning systems.Maria De-Arteaga & Sina Fazelpour - 2022 - Big Data and Society 9 (1).
    There has been a surge of recent interest in sociocultural diversity in machine learning research. Currently, however, there is a gap between discussions of measures and benefits of diversity in machine learning, on the one hand, and the broader research on the underlying concepts of diversity and the precise mechanisms of its functional benefits, on the other. This gap is problematic because diversity is not a monolithic concept. Rather, different concepts of diversity are based on distinct rationales that should inform (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation