Switch to: References

Citations of:

What's there to know? A Fictionalist Approach to Mathematical Knowledge

In Mary Leng, Alexander Paseau & Michael D. Potter (eds.), Mathematical Knowledge. Oxford, England: Oxford University Press (2007)

Add citations

You must login to add citations.
  1. Models, structures, and the explanatory role of mathematics in empirical science.Mary Leng - 2021 - Synthese 199 (3-4):10415-10440.
    Are there genuine mathematical explanations of physical phenomena, and if so, how can mathematical theories, which are typically thought to concern abstract mathematical objects, explain contingent empirical matters? The answer, I argue, is in seeing an important range of mathematical explanations as structural explanations, where structural explanations explain a phenomenon by showing it to have been an inevitable consequence of the structural features instantiated in the physical system under consideration. Such explanations are best cast as deductive arguments which, by virtue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Knowledge and Naturalism.Fabio Sterpetti - 2019 - Philosophia 47 (1):225-247.
    How should one conceive of the method of mathematics, if one takes a naturalist stance? Mathematical knowledge is regarded as the paradigm of certain knowledge, since mathematics is based on the axiomatic method. Natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some naturalists try to naturalize mathematics relying on Darwinism. But several difficulties arise when one tries to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitivism about Epistemic Modality.David Elohim - manuscript
    This paper aims to vindicate the thesis that cognitive computational properties are abstract objects implemented in physical systems. I avail of the equivalence relations countenanced in Homotopy Type Theory, in order to specify an abstraction principle for epistemic intensions. The homotopic abstraction principle for epistemic intensions provides an epistemic conduit into our knowledge of intensions as abstract objects. I examine, then, how intensional functions in Epistemic Modal Algebra are deployed as core models in the philosophy of mind, Bayesian perceptual psychology, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • There is No Easy Road to Nominalism.M. Colyvan - 2010 - Mind 119 (474):285-306.
    Hartry Field has shown us a way to be nominalists: we must purge our scientific theories of quantification over abstracta and we must prove the appropriate conservativeness results. This is not a path for the faint hearted. Indeed, the substantial technical difficulties facing Field's project have led some to explore other, easier options. Recently, Jody Azzouni, Joseph Melia, and Stephen Yablo have argued that it is a mistake to read our ontological commitments simply from what the quantifiers of our best (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Idealism and the Identity Theory of Truth.Robert Trueman - 2020 - Mind 130 (519):783-807.
    In a recent article, Hofweber presents a new, and surprising, argument for idealism. His argument is surprising because it starts with an apparently innocent premiss from the philosophy of language: that ‘that’-clauses do not refer. I do not think that Hofweber's argument works, and my first aim in this paper is to explain why. However, I agree with Hofweber that what we say about ‘that’-clauses has important metaphysical consequences. My second aim is to argue that, far from leading us into (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predication as Ascription.David Liebesman - 2015 - Mind 124 (494):517-569.
    I articulate and defend a necessary and sufficient condition for predication. The condition is that a term or term-occurrence stands in the relation of ascription to its designatum, ascription being a fundamental semantic relation that differs from reference. This view has dramatically different semantic consequences from its alternatives. After outlining the alternatives, I draw out these consequences and show how they favour the ascription view. I then develop the view and elicit a number of its virtues.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • What Are Mathematical Coincidences ?M. Lange - 2010 - Mind 119 (474):307-340.
    Although all mathematical truths are necessary, mathematicians take certain combinations of mathematical truths to be ‘coincidental’, ‘accidental’, or ‘fortuitous’. The notion of a ‘ mathematical coincidence’ has so far failed to receive sufficient attention from philosophers. I argue that a mathematical coincidence is not merely an unforeseen or surprising mathematical result, and that being a misleading combination of mathematical facts is neither necessary nor sufficient for qualifying as a mathematical coincidence. I argue that although the components of a mathematical coincidence (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege, Indispensability, and the Compatibilist Heresy.Andrea Sereni - 2015 - Philosophia Mathematica 23 (1):11-30.
    In Grundgesetze, Vol. II, §91, Frege argues that ‘it is applicability alone which elevates arithmetic from a game to the rank of a science’. Many view this as an in nuce statement of the indispensability argument later championed by Quine. Garavaso has questioned this attribution. I argue that even though Frege's applicability argument is not a version of ia, it facilitates acceptance of suitable formulations of ia. The prospects for making the empiricist ia compatible with a rationalist Fregean framework appear (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Objects and objectivity : Alternatives to mathematical realism.Ebba Gullberg - 2011 - Dissertation, Umeå Universitet
    This dissertation is centered around a set of apparently conflicting intuitions that we may have about mathematics. On the one hand, we are inclined to believe that the theorems of mathematics are true. Since many of these theorems are existence assertions, it seems that if we accept them as true, we also commit ourselves to the existence of mathematical objects. On the other hand, mathematical objects are usually thought of as abstract objects that are non-spatiotemporal and causally inert. This makes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On What There is—Infinitesimals and the Nature of Numbers.Jens Erik Fenstad - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):57-79.
    This essay will be divided into three parts. In the first part, we discuss the case of infintesimals seen as a bridge between the discrete and the continuous. This leads in the second part to a discussion of the nature of numbers. In the last part, we follow up with some observations on the obvious applicability of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Of Marriage and Mathematics: Inferentialism and Social Ontology.James Henry Collin - 2023 - Topoi 42 (1):247-257.
    The semantic inferentialist account of the social institution of semantic meaning can be naturally extended to account for social ontology. I argue here that semantic inferentialism provides a framework within which mathematical ontology can be understood as social ontology, and mathematical facts as socially instituted facts. I argue further that the semantic inferentialist framework provides resources to underpin at least some aspects of the objectivity of mathematics, even when the truth of mathematical claims is understood as socially instituted.
    Download  
     
    Export citation  
     
    Bookmark  
  • Naturalism and Abstract Entities.Feng Ye - 2010 - International Studies in the Philosophy of Science 24 (2):129-146.
    I argue that the most popular versions of naturalism imply nominalism in philosophy of mathematics. In particular, there is a conflict in Quine's philosophy between naturalism and realism in mathematics. The argument starts from a consequence of naturalism on the nature of human cognitive subjects, physicalism about cognitive subjects, and concludes that this implies a version of nominalism, which I will carefully characterize. The indispensability of classical mathematics for the sciences and semantic/confirmation holism does not affect the argument. The disquotational (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An ‘i’ for an i, a Truth for a Truth†.Mary Leng - 2020 - Philosophia Mathematica 28 (3):347-359.
    Stewart Shapiro’s ante rem structuralism recognizes the structural or ‘algebraic’ aspects of mathematical practice while still offering a face-value semantics. Fictionalism, as a purely ‘algebraic’ approach, is held to be at a disadvantage, as compared with Shapiro’s structuralism, in not interpreting mathematics at face value. However, the face-value reading of mathematical singular terms has difficulty explaining how we can use such terms to pick out a unique referent in cases where the relevant mathematical structures admit non-trivial automorphisms. Shapiro offers a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reasoning Under a Presupposition and the Export Problem: The Case of Applied Mathematics.Mary Leng - 2017 - Australasian Philosophical Review 1 (2):133-142.
    ABSTRACT‘expressionist’ accounts of applied mathematics seek to avoid the apparent Platonistic commitments of our scientific theories by holding that we ought only to believe their mathematics-free nominalistic content. The notion of ‘nominalistic content’ is, however, notoriously slippery. Yablo's account of non-catastrophic presupposition failure offers a way of pinning down this notion. However, I argue, its reliance on possible worlds machinery begs key questions against Platonism. I propose instead that abstract expressionists follow Geoffrey Hellman's lead in taking the assertoric content of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Five theories of reasoning: Interconnections and applications to mathematics.Alison Pease & Andrew Aberdein - 2011 - Logic and Logical Philosophy 20 (1-2):7-57.
    The last century has seen many disciplines place a greater priority on understanding how people reason in a particular domain, and several illuminating theories of informal logic and argumentation have been developed. Perhaps owing to their diverse backgrounds, there are several connections and overlapping ideas between the theories, which appear to have been overlooked. We focus on Peirce’s development of abductive reasoning [39], Toulmin’s argumentation layout [52], Lakatos’s theory of reasoning in mathematics [23], Pollock’s notions of counterexample [44], and argumentation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations