Switch to: References

Add citations

You must login to add citations.
  1. The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in Current Mathematics and Physics.Luciano Boi - 2019 - Kairos 22 (1):1-53.
    According to Kant, the axioms of intuition, i.e. space and time, must provide an organization of the sensory experience. However, this first orderliness of empirical sensations seems to depend on a kind of faculty pertaining to subjectivity, rather than to the encounter of these same intuitions with the real properties of phenomena. Starting from an analysis of some very significant developments in mathematical and theoretical physics in the last decades, in which intuition played an important role, we argue that nevertheless (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Debunking arguments.Daniel Z. Korman - 2019 - Philosophy Compass 14 (12):e12638.
    Debunking arguments—also known as etiological arguments, genealogical arguments, access problems, isolation objec- tions, and reliability challenges—arise in philosophical debates about a diverse range of topics, including causation, chance, color, consciousness, epistemic reasons, free will, grounding, laws of nature, logic, mathematics, modality, morality, natural kinds, ordinary objects, religion, and time. What unifies the arguments is the transition from a premise about what does or doesn't explain why we have certain mental states to a negative assessment of their epistemic status. I examine (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Reason, causation and compatibility with the phenomena.Basil Evangelidis - 2019 - Wilmington, Delaware, USA: Vernon Press.
    'Reason, Causation and Compatibility with the Phenomena' strives to give answers to the philosophical problem of the interplay between realism, explanation and experience. This book is a compilation of essays that recollect significant conceptions of rival terms such as determinism and freedom, reason and appearance, power and knowledge. This title discusses the progress made in epistemology and natural philosophy, especially the steps that led from the ancient theory of atomism to the modern quantum theory, and from mathematization to analytic philosophy. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-ontological Structuralism†.Michael Resnik - 2019 - Philosophia Mathematica 27 (3):303-315.
    ABSTRACT Historical structuralist views have been ontological. They either deny that there are any mathematical objects or they maintain that mathematical objects are structures or positions in them. Non-ontological structuralism offers no account of the nature of mathematical objects. My own structuralism has evolved from an early sui generis version to a non-ontological version that embraces Quine’s doctrine of ontological relativity. In this paper I further develop and explain this view.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some Recent Existential Appeals to Mathematical Experience.Michael J. Shaffer - 2006 - Principia: An International Journal of Epistemology 10 (2):143–170.
    Some recent work by philosophers of mathematics has been aimed at showing that our knowledge of the existence of at least some mathematical objects and/or sets can be epistemically grounded by appealing to perceptual experience. The sensory capacity that they refer to in doing so is the ability to perceive numbers, mathematical properties and/or sets. The chief defense of this view as it applies to the perception of sets is found in Penelope Maddy’s Realism in Mathematics, but a number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a pluralist theory of singular thought.Michele Palmira - 2018 - Synthese 195 (9):3947-3974.
    This paper investigates the question of how to correctly capture the scope of singular thinking. The first part of the paper identifies a scope problem for the dominant view of singular thought maintaining that, in order for a thinker to have a singular thought about an object o, the thinker has to bear a special epistemic relation to o. The scope problem has it is that this view cannot make sense of the singularity of our thoughts about objects to which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Principles of Acquaintance.Jessica Pepp - 2019 - In Jonathan Knowles & Thomas Raleigh (eds.), Acquaintance: New Essays. Oxford, United Kingdom: Oxford University Press.
    The thesis that in order to genuinely think about a particular object one must be (in some sense) acquainted with that object has been thoroughly explored since it was put forward by Bertrand Russell. Recently, the thesis has come in for mounting criticism. The aim of this paper is to point out that neither the exploration nor the criticism have been sensitive to the fact that the thesis can be interpreted in two different ways, yielding two different principles of acquaintance. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pluralism in Mathematics: A New Position in Philosophy of Mathematics.Michèle Friend - 2013 - Dordrecht, Netherland: Springer.
    The pluralist sheds the more traditional ideas of truth and ontology. This is dangerous, because it threatens instability of the theory. To lend stability to his philosophy, the pluralist trades truth and ontology for rigour and other ‘fixtures’. Fixtures are the steady goal posts. They are the parts of a theory that stay fixed across a pair of theories, and allow us to make translations and comparisons. They can ultimately be moved, but we tend to keep them fixed temporarily. Apart (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Existence, Fundamentality, and the Scope of Ontology.Uriah Kriegel - 2015 - Argumenta 1 (1):97-109.
    A traditional conception of ontology takes existence to be its proprietary subject matter—ontology is the study of what exists (§ 1). Recently, Jonathan Schaffer has argued that ontology is better thought of rather as the study of what is basic or fundamental in reality (§ 2). My goal here is twofold. First, I want to argue that while Schaffer’s characterization is quite plausible for some ontological questions, for others it is not (§ 3). More importantly, I want to offer a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Possible Worlds.Christopher Menzel - 2013 - Stanford Encyclopedia of Philosophy.
    This article includes a basic overview of possible world semantics and a relatively comprehensive overview of three central philosophical conceptions of possible worlds: Concretism (represented chiefly by Lewis), Abstractionism (represented chiefly by Plantinga), and Combinatorialism (represented chiefly by Armstrong).
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Aristotle on Mathematical Truth.Phil Corkum - 2012 - British Journal for the History of Philosophy 20 (6):1057-1076.
    Both literalism, the view that mathematical objects simply exist in the empirical world, and fictionalism, the view that mathematical objects do not exist but are rather harmless fictions, have been both ascribed to Aristotle. The ascription of literalism to Aristotle, however, commits Aristotle to the unattractive view that mathematics studies but a small fragment of the physical world; and there is evidence that Aristotle would deny the literalist position that mathematical objects are perceivable. The ascription of fictionalism also faces a (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Arithmaetical platonism: Reliability and judgement-dependence.John Divers & Alexander Miller - 1999 - Philosophical Studies 95 (3):277-310.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Searching for pragmatism in the philosophy of mathematics: Critical Studies / Book Reviews.Steven J. Wagner - 2001 - Philosophia Mathematica 9 (3):355-376.
    Download  
     
    Export citation  
     
    Bookmark  
  • Arguments as Abstract Objects.Paul L. Simard Smith & Andrei Moldovan - 2011 - Informal Logic 31 (3):230-261.
    In recent discussions concerning the definition of argument, it has been maintained that the word ‘argument’ exhibits the process-product ambiguity, or an act/object ambigu-ity. Drawing on literature on lexical ambiguity we argue that ‘argument’ is not ambiguous. The term ‘argu-ment’ refers to an object, not to a speech act. We also examine some of the important implications of our argument by considering the question: what sort of abstract objects are arguments?
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Category mistakes are meaningful.Ofra Magidor - 2009 - Linguistics and Philosophy 32 (6):553-581.
    Category mistakes are sentences such as ‘Colourless green ideas sleep furiously’ or ‘The theory of relativity is eating breakfast’. Such sentences are highly anomalous, and this has led a large number of linguists and philosophers to conclude that they are meaningless (call this ‘the meaninglessness view’). In this paper I argue that the meaninglessness view is incorrect and category mistakes are meaningful. I provide four arguments against the meaninglessness view: in Sect. 2, an argument concerning compositionality with respect to category (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Frege and Kant on a priori knowledge.Graciela Pierris - 1988 - Synthese 77 (3):285 - 319.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Propositions, numbers, and the problem of arbitrary identification.Joseph G. Moore - 1999 - Synthese 120 (2):229-263.
    Those inclined to believe in the existence of propositions as traditionally conceived might seek to reduce them to some other type of entity. However, parsimonious propositionalists of this type are confronted with a choice of competing candidates – for example, sets of possible worlds, and various neo-Russellian and neo-Fregean constructions. It is argued that this choice is an arbitrary one, and that it closely resembles the type of problematic choice that, as Benacerraf pointed out, bedevils the attempt to reduce numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Kurt Godel and phenomenology.Richard Tieszen - 1992 - Philosophy of Science 59 (2):176-194.
    Godel began to seriously study Husserl's phenomenology in 1959, and the Godel Nachlass is known to contain many notes on Husserl. In this paper I describe what is presently known about Godel's interest in phenomenology. Among other things, it appears that the 1963 supplement to "What is Cantor's Continuum Hypothesis?", which contains Godel's famous views on mathematical intuition, may have been influenced by Husserl. I then show how Godel's views on mathematical intuition and objectivity can be readily interpreted in a (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Mathematics and reality.Stewart Shapiro - 1983 - Philosophy of Science 50 (4):523-548.
    The subject of this paper is the philosophical problem of accounting for the relationship between mathematics and non-mathematical reality. The first section, devoted to the importance of the problem, suggests that many of the reasons for engaging in philosophy at all make an account of the relationship between mathematics and reality a priority, not only in philosophy of mathematics and philosophy of science, but also in general epistemology/metaphysics. This is followed by a (rather brief) survey of the major, traditional philosophies (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Inference to the best explanation as supporting the expansion of mathematicians’ ontological commitments.Marc Lange - 2022 - Synthese 200 (2):1-26.
    This paper argues that in mathematical practice, conjectures are sometimes confirmed by “Inference to the Best Explanation” as applied to some mathematical evidence. IBE operates in mathematics in the same way as IBE in science. When applied to empirical evidence, IBE sometimes helps to justify the expansion of scientists’ ontological commitments. Analogously, when applied to mathematical evidence, IBE sometimes helps to justify mathematicians' in expanding the range of their ontological commitments. IBE supplements other forms of non-deductive reasoning in mathematics, avoiding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuition and Its Place in Ethics.Robert Audi - 2015 - Journal of the American Philosophical Association 1 (1):57--77.
    ABSTRACT ABSTRACT: This paper provides a multifaceted account of intuition. The paper integrates apparently disparate conceptions of intuition, shows how the notion has figured in epistemology as well as in intuitionistic ethics, and clarifies the relation between the intuitive and the self-evident. Ethical intuitionism is characterized in ways that, in phenomenology, epistemology, and ontology, represent an advance over the position of W. D. Ross while preserving its commonsense normative core and intuitionist character. This requires clarifying the sense in which intuitions (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Conjoining Mathematical Empiricism with Mathematical Realism: Maddy’s Account of Set Perception Revisited.Alex Levine - 2005 - Synthese 145 (3):425-448.
    Penelope Maddy's original solution to the dilemma posed by Benacerraf in his 'Mathematical Truth' was to reconcile mathematical empiricism with mathematical realism by arguing that we can perceive realistically construed sets. Though her hypothesis has attracted considerable critical attention, much of it, in my view, misses the point. In this paper I vigorously defend Maddy's account against published criticisms, not because I think it is true, but because these criticisms have functioned to obscure a more fundamental issue that is well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Klassinen matematiikka ja logiikka.Panu Raatikainen - 1996 - In Christoffer Gefwert (ed.), Logiikka, matematiikka ja tietokone – Perusteet: historiaa, filosofiaa ja sovelluksia. Finnish Artificial Intelligence Society.
    Toisaalta ennennäkemätön äärettömien joukko-opillisten menetelmien hyödyntäminen sekä toisaalta epäilyt niiden hyväksyttävyydestä ja halu oikeuttaa niiden käyttö ovat ratkaisevasti muovanneet vuosisatamme matematiikkaa ja logiikkaa. Tämän kehityksen vaikutus nykyajan filosofiaan on myös ollut valtaisa; merkittävää osaa siitä ei voi edes ymmärtää tuntematta sen yhteyttä tähän matematiikan ja logiikan vallankumoukseen. Lähestymistapoja, jotka tavalla tai toisella hyväksyvät äärettömän matematiikan ja perinteisten logiikan sääntöjen (erityisesti kolmannen poissuljetun lain) soveltamisen myös sen piirissä, on tullut tavaksi kutsua klassiseksi matematiikaksi ja logiikaksi erotuksena nämä hylkäävistä radikaaleista intuitionistisista ja (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics, science and ontology.Thomas Tymoczko - 1991 - Synthese 88 (2):201 - 228.
    According to quasi-empiricism, mathematics is very like a branch of natural science. But if mathematics is like a branch of science, and science studies real objects, then mathematics should study real objects. Thus a quasi-empirical account of mathematics must answer the old epistemological question: How is knowledge of abstract objects possible? This paper attempts to show how it is possible.The second section examines the problem as it was posed by Benacerraf in Mathematical Truth and the next section presents a way (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arguments as abstract objects.Paul Simard Smith, Andrei Moldovan & G. C. Goddu - unknown
    In recent discussions concerning the definition of argument, it has been maintained that the word ‘argument’ exhibits the process-product ambiguity, or an act/object ambi-guity. Drawing on literature on lexical ambiguity we argue that ‘argument’ is not ambiguous. The term ‘argument’ refers to an object, not to a speech act. We also examine some of the important implications of our argument by considering the question: what sort of abstract objects are arguments?
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Intuiting the infinite.Robin Jeshion - 2014 - Philosophical Studies 171 (2):327-349.
    This paper offers a defense of Charles Parsons’ appeal to mathematical intuition as a fundamental factor in solving Benacerraf’s problem for a non-eliminative structuralist version of Platonism. The literature is replete with challenges to his well-known argument that mathematical intuition justifies our knowledge of the infinitude of the natural numbers, in particular his demonstration that any member of a Hilbertian stroke string ω-sequence has a successor. On Parsons’ Kantian approach, this amounts to demonstrating that for an “arbitrary” or “vaguely represented” (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Truth and proof: The platonism of mathematics.W. W. Tait - 1986 - Synthese 69 (3):341 - 370.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Empiricism in arithmetic and analysis.E. B. Davies - 2003 - Philosophia Mathematica 11 (1):53-66.
    We discuss the philosophical status of the statement that (9n – 1) is divisible by 8 for various sizes of the number n. We argue that even this simple problem reveals deep tensions between truth and verification. Using Gillies's empiricist classification of theories into levels, we propose that statements in arithmetic should be classified into three different levels depending on the sizes of the numbers involved. We conclude by discussing the relationship between the real number system and the physical continuum.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Against (maddian) naturalized platonism.Mark Balaguer - 1994 - Philosophia Mathematica 2 (2):97-108.
    It is argued here that mathematical objects cannot be simultaneously abstract and perceptible. Thus, naturalized versions of mathematical platonism, such as the one advocated by Penelope Maddy, are unintelligble. Thus, platonists cannot respond to Benacerrafian epistemological arguments against their view vias Maddy-style naturalization. Finally, it is also argued that naturalized platonists cannot respond to this situation by abandoning abstractness (that is, platonism); they must abandon perceptibility (that is, naturalism).
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Mathematics and the world: explanation and representation.John-Hamish Heron - 2017 - Dissertation, King’s College London
    Download  
     
    Export citation  
     
    Bookmark  
  • Proper classes.Penelope Maddy - 1983 - Journal of Symbolic Logic 48 (1):113-139.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Mathematical Alchemy.Penelope Maddy - 1986 - British Journal for the Philosophy of Science 37 (3):279-314.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Structuralism and the Applicability of Mathematics.Jairo José da Silva - 2010 - Global Philosophy 20 (2-3):229-253.
    In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The open-endedness of the set concept and the semantics of set theory.A. Paseau - 2003 - Synthese 135 (3):379 - 399.
    Some philosophers have argued that the open-endedness of the set concept has revisionary consequences for the semantics and logic of set theory. I consider (several variants of) an argument for this claim, premissed on the view that quantification in mathematics cannot outrun our conceptual abilities. The argument urges a non-standard semantics for set theory that allegedly sanctions a non-classical logic. I show that the views about quantification the argument relies on turn out to sanction a classical semantics and logic after (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • And they ain't outside the head either.John Koethe - 1992 - Synthese 90 (1):27-53.
    According to a classical view in the philosophy of language, the reference of a term is determined by a property of the term which supervenes on the history of its use. A contrasting view is that a term's reference is determined by how it is properly interpreted, in accordance with certain constraints or conditions of adequacy on interpretations. Causal theories of reference of the sort associated with Hilary Putnam, Saul Kripke and Michael Devitt are versions of the first view, while (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Omni-beauty as a divine attribute.Robson Jon - 2019 - Religious Studies 55 (1):55-75.
    The claim that God is perfectly beautiful has played a key role within the history of a number of religious traditions. However, this view has received surprisingly little attention from philosophers of religion in recent decades. In this article I aim to remedy this neglect by addressing some key philosophical issues surrounding the doctrine of divine beauty. I begin by considering how best to explicate the claim that God is perfectly beautiful before moving on to ask what consequences accepting this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The roots of contemporary Platonism.Penelope Maddy - 1989 - Journal of Symbolic Logic 54 (4):1121-1144.
    Though many working mathematicians embrace a rough and ready form of Platonism, that venerable position has suffered a checkered philosophical career. Indeed the three schools of thought with which most of us began our official philosophizing about mathematics—Intuitionism, Formalism, and Logicism—all stand in fundamental disagreement with Platonism. Nevertheless, various versions of Platonistic thinking survive in contemporary philosophical circles. The aim of this paper is to describe these views, and, as my title suggests, to trace their roots.I'll begin with some preliminary (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Literalism and the applicability of arithmetic.L. Luce - 1991 - British Journal for the Philosophy of Science 42 (4):469-489.
    Philosophers have recently expressed interest in accounting for the usefulness of mathematics to science. However, it is certainly not a new concern. Putnam and Quine have each worked out an argument for the existence of mathematical objects from the indispensability of mathematics to science. Were Quine or Putnam to disregard the applicability of mathematics to science, he would not have had as strong a case for platonism. But I think there must be ways of parsing mathematical sentences which account for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consideraciones sobre la noción de intuición matemática.Lina María Peña-Páez - 2020 - Ágora Papeles de Filosofía 39 (2):127-141.
    La historia de la matemática muestra como la intuición matemática ha estado presente en la invención y desarrollo de conceptos, teorías y procedimientos matemáticos. Así mismo, ha permeado el debate filosófico, los fundamentos de la matemática y los discursos educativos; otorgándole vigencia al estudio de este tema. En el presente artículo, se exponen los argumentos bajo los cuales es posible sustentar que la intuición es un proceso, que toma ideas que se presentan, inicialmente de manera “desordenada”, y que gracias al (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Phenomenological Ideas in the Philosophy of Mathematics. From Husserl to Gödel.Roman Murawski Thomas Bedürftig - 2018 - Studia Semiotyczne 32 (2):33-50.
    The paper is devoted to phenomenological ideas in conceptions of modern philosophy of mathematics. Views of Husserl, Weyl, Becker andGödel will be discussed and analysed. The aim of the paper is to show the influence of phenomenological ideas on the philosophical conceptions concerning mathematics. We shall start by indicating the attachment of Edmund Husserl to mathematics and by presenting the main points of his philosophy of mathematics. Next, works of two philosophers who attempted to apply Husserl’s phenomenological ideas to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilary Putnam on the philosophy of logic and mathematics.José Miguel Sagüillo - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):183-200.
    I discuss Putnam’s conception of logical truth as grounded in his picture of mathematical practice and ontology. i begin by comparing Putnam’s 1971 Philosophy of Logic with Quine’s homonymous book. Next, Putnam’s changing views on modality are surveyed, moving from the modal pre-formal to the de-modalized formal characterization of logical validity. Section three suggests a complementary view of Platonism and modalism underlying different stages of a dynamic mathematical practice. The final section argues for the pervasive platonistic conception of the working (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Leśniewski's Systems of Logic and Foundations of Mathematics.Rafal Urbaniak - 2013 - Cham, Switzerland: Springer.
    With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy’s great ...
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Doxasticism: Belief and the information-responsiveness of mind.Robert Audi - 2020 - Episteme 17 (4):542-562.
    ABSTRACTThis paper concerns a problem that has received insufficient analysis in the philosophical literature so far: the conditions under which an information-bearing state – say a perception or recollection – yields belief. The paper distinguishes between belief and a psychological property easily conflated with belief, illustrates the tendency of philosophers to overlook this distinction, and offers a positive conception of the mind's information-responsiveness that requires far less belief-formation – and far less formation of other propositional attitudes – than has been (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Limits of Reconstructive Neologicist Epistemology.Eileen S. Nutting - 2018 - Philosophical Quarterly 68 (273):717-738.
    Wright claims that his and Hale’s abstractionist neologicist project is primarily epistemological in aim. Its epistemological aims include establishing the possibility of a priori mathematical knowledge, and establishing the possibility of reference to abstract mathematical objects. But, as Wright acknowledges, there is a question of how neologicist epistemology applies to actual, ordinary mathematical beliefs. I take up this question, focusing on arithmetic. Following a suggestion of Hale and Wright, I consider the possibility that the neologicist account provides an idealised reconstruction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Review. [REVIEW]Donald A.: Gillies - 1992 - British Journal for the Philosophy of Science 43 (2):263-278.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Committing to an individual: ontological commitment, reference and epistemology.Frederique Janssen-Lauret - 2016 - Synthese 193 (2):583-604.
    When we use a directly referential expression to denote an object, do we incur an ontological commitment to that object, as Russell and Barcan Marcus held? Not according to Quine, whose regimented language has only variables as denoting expressions, but no constants to model direct reference. I make a case for a more liberal conception of ontological commitment—more wide-ranging than Quine’s—which allows for commitment to individuals, with an improved logical language of regimentation. The reason for Quine’s prohibition on commitment to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Applied Mathematics in the Sciences.Dale Jacquette - 2006 - Croatian Journal of Philosophy 6 (2):237-267.
    A complete philosophy of mathematics must address Paul Benacerraf’s dilemma. The requirements of a general semantics for the truth of mathematical theorems that coheres also with the meaning and truth conditions for non-mathematical sentences, according to Benacerraf, should ideally be coupled with an adequate epistemology for the discovery of mathematical knowledge. Standard approaches to the philosophy of mathematics are criticized against their own merits and against the background of Benacerraf’s dilemma, particularly with respect to the problem of understanding the distinction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against cantorism.Allen P. Hazen - 1994 - Sophia 33 (2):21-32.
    Download  
     
    Export citation  
     
    Bookmark  
  • Nicolas Bourbaki and the concept of mathematical structure.Leo Corry - 1992 - Synthese 92 (3):315 - 348.
    In the present article two possible meanings of the term mathematical structure are discussed: a formal and a nonformal one. It is claimed that contemporary mathematics is structural only in the nonformal sense of the term. Bourbaki's definition of structure is presented as one among several attempts to elucidate the meaning of that nonformal idea by developing a formal theory which allegedly accounts for it. It is shown that Bourbaki's concept of structure was, from a mathematical point of view, a (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations