Switch to: References

Add citations

You must login to add citations.
  1. Liar-type Paradoxes and the Incompleteness Phenomena.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Philosophical Logic 45 (4):381-398.
    We define a liar-type paradox as a consistent proposition in propositional modal logic which is obtained by attaching boxes to several subformulas of an inconsistent proposition in classical propositional logic, and show several famous paradoxes are liar-type. Then we show that we can generate a liar-type paradox from any inconsistent proposition in classical propositional logic and that undecidable sentences in arithmetic can be obtained from the existence of a liar-type paradox. We extend these results to predicate logic and discuss Yablo’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cut Elimination for GLS Using the Terminability of its Regress Process.Jude Brighton - 2016 - Journal of Philosophical Logic 45 (2):147-153.
    The system GLS, which is a modal sequent calculus system for the provability logic GL, was introduced by G. Sambin and S. Valentini in Journal of Philosophical Logic, 11, 311–342,, and in 12, 471–476,, the second author presented a syntactic cut-elimination proof for GLS. In this paper, we will use regress trees in order to present a simpler and more intuitive syntactic cut derivability proof for GLS1, which is a variant of GLS without the cut rule.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Provability algebras and proof-theoretic ordinals, I.Lev D. Beklemishev - 2004 - Annals of Pure and Applied Logic 128 (1-3):103-123.
    We suggest an algebraic approach to proof-theoretic analysis based on the notion of graded provability algebra, that is, Lindenbaum boolean algebra of a theory enriched by additional operators which allow for the structure to capture proof-theoretic information. We use this method to analyze Peano arithmetic and show how an ordinal notation system up to 0 can be recovered from the corresponding algebra in a canonical way. This method also establishes links between proof-theoretic ordinal analysis and the work which has been (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • A generalized notion of weak interpretability and the corresponding modal logic.Giorgie Dzhaparidze - 1993 - Annals of Pure and Applied Logic 61 (1-2):113-160.
    Dzhaparidze, G., A generalized notion of weak interpretability and the corresponding modal logic, Annals of Pure and Applied Logic 61 113-160. A tree Tr of theories T1,...,Tn is called tolerant, if there are consistent extensions T+1,...,T+n of T1,...,Tn, where each T+i interprets its successors in the tree Tr. We consider a propositional language with the following modal formation rule: if Tr is a tree of formulas, then Tr is a formula, and axiomatically define in this language the decidable logics TLR (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The logic of arithmetical hierarchy.Giorgie Dzhaparidze - 1994 - Annals of Pure and Applied Logic 66 (2):89-112.
    Formulas of the propositional modal language with the unary modal operators □, Σ1, 1, Σ2, 2,… are considered as schemata of sentences of arithmetic , where □A is interpreted as “A is PA-provable”, ΣnA as “A is PA-equivalent to a Σn-sentence” and nA as “A is PA-equivalent to a Boolean combination of Σn-sentences”. We give an axiomatization and show decidability of the sets of the modal formulas which are schemata of: PA-provable, true arithmetical sentences.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A course on bimodal provability logic.Albert Visser - 1995 - Annals of Pure and Applied Logic 73 (1):109-142.
    In this paper we study 1. the frame-theory of certain bimodal provability logics involving the reflection principle and we study2. certain specific bimodal logics with a provability predicate for a subtheory of Peano arithmetic axiomatized by a non-standardly finite number of axioms.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The single-conclusion proof logic and inference rules specification.Vladimir N. Krupski - 2001 - Annals of Pure and Applied Logic 113 (1-3):181-206.
    The logic of single-conclusion proofs () is introduced. It combines the verification property of proofs with the single valuedness of proof predicate and describes the operations on proofs induced by modus ponens rule and proof checking. It is proved that is decidable, sound and complete with respect to arithmetical proof interpretations based on single-valued proof predicates. The application to arithmetical inference rules specification and -admissibility testing is considered. We show that the provability in gives the complete admissibility test for the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Provability logics with quantifiers on proofs.Rostislav E. Yavorsky - 2001 - Annals of Pure and Applied Logic 113 (1-3):373-387.
    We study here extensions of the Artemov's logic of proofs in the language with quantifiers on proof variables. Since the provability operator □ A could be expressed in this language by the formula u[u]A, the corresponding logic naturally extends the well-known modal provability logic GL. Besides, the presence of quantifiers on proofs allows us to study some properties of provability not covered by the propositional logics.In this paper we study the arithmetical complexity of the provability logic with quantifiers on proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Around provability logic.Leo Esakia - 2010 - Annals of Pure and Applied Logic 161 (2):174-184.
    We present some results on algebraic and modal analysis of polynomial distortions of the standard provability predicate in Peano Arithmetic PA, and investigate three provability-like modal systems related to the Gödel–Löb modal system GL. We also present a short review of relational and topological semantics for these systems, and describe the dual category of algebraic models of our main modal system.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bisimulations between generalized Veltman models and Veltman models.Mladen Vuković - 2008 - Mathematical Logic Quarterly 54 (4):368-373.
    Interpretability logic is an extension of provability logic. Veltman models and generalized Veltman models are two semantics for interpretability logic. We consider a connection between Veltman semantics and generalized Veltman semantics. We prove that for a complete image-finite generalized Veltman modelW there is a Veltman model W ′ that is bisimular to W.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On systems of modal logic with provability interpretations.George Boolos - 1980 - Theoria 46 (1):7-18.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Modal Logic of Gödel Sentences.Hirohiko Kushida - 2010 - Journal of Philosophical Logic 39 (5):577 - 590.
    The modal logic of Gödel sentences, termed as GS, is introduced to analyze the logical properties of 'true but unprovable' sentences in formal arithmetic. The logic GS is, in a sense, dual to Grzegorczyk's Logic, where modality can be interpreted as 'true and provable'. As we show, GS and Grzegorczyk's Logic are, in fact, mutually embeddable. We prove Kripke completeness and arithmetical completeness for GS. GS is also an extended system of the logic of 'Essence and Accident' proposed by Marcos (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Peano Corto and Peano Basso: A Study of Local Induction in the Context of Weak Theories.Albert Visser - 2014 - Mathematical Logic Quarterly 60 (1-2):92-117.
    In this paper we study local induction w.r.t. Σ1‐formulas over the weak arithmetic. The local induction scheme, which was introduced in, says roughly this: for any virtual class that is progressive, i.e., is closed under zero and successor, and for any non‐empty virtual class that is definable by a Σ1‐formula without parameters, the intersection of and is non‐empty. In other words, we have, for all Σ1‐sentences S, that S implies, whenever is progressive. Since, in the weak context, we have (at (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Intuitionistic logic and modality via topology.Leo Esakia - 2004 - Annals of Pure and Applied Logic 127 (1-3):155-170.
    In the pioneering article and two papers, written jointly with McKinsey, Tarski developed the so-called algebraic and topological frameworks for the Intuitionistic Logic and the Lewis modal system. In this paper, we present an outline of modern systems with a topological tinge. We consider topological interpretation of basic systems GL and G of the provability logic in terms of the Cantor derivative and the Hausdorff residue.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • On the provability logic of bounded arithmetic.Rineke Verbrugge & Alessandro Berarducci - 1991 - Annals of Pure and Applied Logic 61 (1-2):75-93.
    Let PLω be the provability logic of IΔ0 + ω1. We prove some containments of the form L ⊆ PLω < Th(C) where L is the provability logic of PA and Th(C) is a suitable class of Kripke frames.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The knower paradox in the light of provability interpretations of modal logic.Paul Égré - 2004 - Journal of Logic, Language and Information 14 (1):13-48.
    This paper propounds a systematic examination of the link between the Knower Paradox and provability interpretations of modal logic. The aim of the paper is threefold: to give a streamlined presentation of the Knower Paradox and related results; to clarify the notion of a syntactical treatment of modalities; finally, to discuss the kind of solution that modal provability logic provides to the Paradox. I discuss the respective strength of different versions of the Knower Paradox, both in the framework of first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Rosser sentences.D. Guaspari - 1979 - Annals of Mathematical Logic 16 (1):81.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • On the completenes principle: A study of provability in heyting's arithmetic and extensions.Albert Visser - 1982 - Annals of Mathematical Logic 22 (3):263-295.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Logic of proofs and provability.Tatiana Yavorskaya - 2001 - Annals of Pure and Applied Logic 113 (1-3):345-372.
    In the paper the joint Logic of Proofs and Provability is presented that incorporates both the modality □ for provability 287–304) and the proof operator tF representing the proof predicate “t is a proof of F” . The obtained system naturally includes both the modal logic of provability GL and Artemov's Logic of Proofs . The presence of the modality □ requires two new operations on proofs that together with operations of allow to realize all the invariant operations on proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On modal logic of deductive closure.Pavel Naumov - 2006 - Annals of Pure and Applied Logic 141 (1):218-224.
    A new modal logic is introduced. It describes properties of provability by interpreting modality as a deductive closure operator on sets of formulas. Logic is proven to be decidable and complete with respect to this semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Variations on a Montagovian theme.Wolfgang Schwarz - 2013 - Synthese 190 (16):3377-3395.
    What are the objects of knowledge, belief, probability, apriority or analyticity? For at least some of these properties, it seems plausible that the objects are sentences, or sentence-like entities. However, results from mathematical logic indicate that sentential properties are subject to severe formal limitations. After surveying these results, I argue that they are more problematic than often assumed, that they can be avoided by taking the objects of the relevant property to be coarse-grained (“sets of worlds”) propositions, and that all (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A modal provability logic of explicit and implicit proofs.Evan Goris - 2010 - Annals of Pure and Applied Logic 161 (3):388-403.
    We establish the bi-modal forgetful projection of the Logic of Proofs and Formal Provability GLA. That is to say, we present a normal bi-modal provability logic with modalities □ and whose theorems are precisely those formulas for which the implicit provability assertions represented by the modality can be realized by explicit proof terms.
    Download  
     
    Export citation  
     
    Bookmark  
  • Provability logic-a short introduction.Per Lindström - 1996 - Theoria 62 (1-2):19-61.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Interpretability in reflexive theories - a survey.Per Lindström - 1997 - Theoria 63 (3):182-209.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logic of proofs.Sergei Artëmov - 1994 - Annals of Pure and Applied Logic 67 (1-3):29-59.
    In this paper individual proofs are integrated into provability logic. Systems of axioms for a logic with operators “A is provable” and “p is a proof of A” are introduced, provided with Kripke semantics and decision procedure. Completeness theorems with respect to the arithmetical interpretation are proved.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • A system of natural deduction for GL.Gianluigi Bellin - 1985 - Theoria 51 (2):89-114.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Arithmetical necessity, provability and intuitionistic logic.Rob Goldblatt - 1978 - Theoria 44 (1):38-46.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On bimodal logics of provability.Lev D. Beklemishev - 1994 - Annals of Pure and Applied Logic 68 (2):115-159.
    We investigate the bimodal logics sound and complete under the interpretation of modal operators as the provability predicates in certain natural pairs of arithmetical theories . Carlson characterized the provability logic for essentially reflexive extensions of theories, i.e. for pairs similar to . Here we study pairs of theories such that the gap between and is not so wide. In view of some general results concerning the problem of classification of the bimodal provability logics we are particularly interested in such (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Anderson and Belnap’s Invitation to Sin.Alasdair Urquhart - 2010 - Journal of Philosophical Logic 39 (4):453 - 472.
    Quine has argued that modal logic began with the sin of confusing use and mention. Anderson and Belnap, on the other hand, have offered us a way out through a strategy of nominahzation. This paper reviews the history of Lewis's early work in modal logic, and then proves some results about the system in which "A is necessary" is intepreted as "A is a classical tautology.".
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The analytical completeness of Dzhaparidze's polymodal logics.George Boolos - 1993 - Annals of Pure and Applied Logic 61 (1-2):95-111.
    The bimodal provability logics of analysis for ordinary provability and provability by the ω-rule are shown to be fragments of certain ‘polymodal’ logics introduced by G.K. Dzhaparidze. In addition to modal axiom schemes expressing Löb's theorem for the two kinds of provability, the logics treated here contain a scheme expressing that if a statement is consistent, then the statement that it is consistent is provable by the ω-rule.
    Download  
     
    Export citation  
     
    Bookmark   4 citations