Switch to: Citations

Add references

You must login to add references.
  1. Laver Indestructibility and the Class of Compact Cardinals.Arthur W. Apter - 1998 - Journal of Symbolic Logic 63 (1):149-157.
    Using an idea developed in joint work with Shelah, we show how to redefine Laver's notion of forcing making a supercompact cardinal $\kappa$ indestructible under $\kappa$-directed closed forcing to give a new proof of the Kimchi-Magidor Theorem in which every compact cardinal in the universe satisfies certain indestructibility properties. Specifically, we show that if K is the class of supercompact cardinals in the ground model, then it is possible to force and construct a generic extension in which the only strongly (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (2 other versions)Set Theory.Keith J. Devlin - 1981 - Journal of Symbolic Logic 46 (4):876-877.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Some results on consecutive large cardinals.Arthur W. Apter - 1983 - Annals of Pure and Applied Logic 25 (1):1-17.
    We obtain 2 models in which AC is false and in which there are long sequences of consecutive large cardinals.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)More on the Least Strongly Compact Cardinal.Arthur W. Apter - 1997 - Mathematical Logic Quarterly 43 (3):427-430.
    We show that it is consistent, relative to a supercompact limit of supercompact cardinals, for the least strongly compact cardinal k to be both the least measurable cardinal and to be > 2k supercompact.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fragile measurability.Joel Hamkins - 1994 - Journal of Symbolic Logic 59 (1):262-282.
    Laver [L] and others [G-S] have shown how to make the supercompactness or strongness of κ indestructible by a wide class of forcing notions. We show, alternatively, how to make these properties fragile. Specifically, we prove that it is relatively consistent that any forcing which preserves $\kappa^{<\kappa}$ and κ+, but not P(κ), destroys the measurability of κ, even if κ is initially supercompact, strong, or if I1(κ) holds. Obtained as an application of some general lifting theorems, this result is an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • A. Lévy and R. M. Solovay. Measurable cardinals and the continuum hypothesis. Israel journal of mathematics, vol. 5 (1967), pp. 234–248. [REVIEW]R. M. Solovay - 1970 - Journal of Symbolic Logic 34 (4):654-655.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • How large is the first strongly compact cardinal? or a study on identity crises.Menachem Magidor - 1976 - Annals of Mathematical Logic 10 (1):33-57.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Destruction or preservation as you like it.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
    The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (2 other versions)On the compactness of ℵ1 and ℵ2.C. A. di Prisco & J. Henle - 1978 - Journal of Symbolic Logic 43 (3):394-401.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some new upper bounds in consistency strength for certain choiceless large cardinal patterns.Arthur W. Apter - 1992 - Archive for Mathematical Logic 31 (3):201-205.
    In this paper, we show that certain choiceless models of ZF originally constructed using an almost huge cardinal can be constructed using cardinals strictly weaker in consistency strength.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Patterns of compact cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
    We show relative to strong hypotheses that patterns of compact cardinals in the universe, where a compact cardinal is one which is either strongly compact or supercompact, can be virtually arbitrary. Specifically, we prove if V “ZFC + Ω is the least inaccessible limit of measurable limits of supercompact cardinals + ƒ : Ω → 2 is a function”, then there is a partial ordering P V so that for , There is a proper class of compact cardinals + If (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (2 other versions)[Omnibus Review].Arthur W. Apter - 2002 - Bulletin of Symbolic Logic 8 (4):550-552.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • (1 other version)[Omnibus Review].Akihiro Kanamori - 1981 - Journal of Symbolic Logic 46 (4):864-866.
    Download  
     
    Export citation  
     
    Bookmark   71 citations