Switch to: Citations

Add references

You must login to add references.
  1. Destruction or preservation as you like it.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
    The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Strong Cardinals can be Fully Laver Indestructible.Arthur W. Apter - 2002 - Mathematical Logic Quarterly 48 (4):499-507.
    We prove three theorems which show that it is relatively consistent for any strong cardinal κ to be fully Laver indestructible under κ-directed closed forcing.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On certain indestructibility of strong cardinals and a question of Hajnal.Moti Gitik & Saharon Shelah - 1989 - Archive for Mathematical Logic 28 (1):35-42.
    A model in which strongness ofκ is indestructible under κ+ -weakly closed forcing notions satisfying the Prikry condition is constructed. This is applied to solve a question of Hajnal on the number of elements of {λ δ |2 δ <λ}.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Laver Indestructibility and the Class of Compact Cardinals.Arthur W. Apter - 1998 - Journal of Symbolic Logic 63 (1):149-157.
    Using an idea developed in joint work with Shelah, we show how to redefine Laver's notion of forcing making a supercompact cardinal $\kappa$ indestructible under $\kappa$-directed closed forcing to give a new proof of the Kimchi-Magidor Theorem in which every compact cardinal in the universe satisfies certain indestructibility properties. Specifically, we show that if K is the class of supercompact cardinals in the ground model, then it is possible to force and construct a generic extension in which the only strongly (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • All Uncountable Cardinals Can be Singular.M. Gitik - 1984 - Journal of Symbolic Logic 49 (2):662-663.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.
    We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Aspects of strong compactness, measurability, and indestructibility.Arthur W. Apter - 2002 - Archive for Mathematical Logic 41 (8):705-719.
    We prove three theorems concerning Laver indestructibility, strong compactness, and measurability. We then state some related open questions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations