Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   330 citations  
  • Adding a club with finite conditions, Part II.John Krueger - 2015 - Archive for Mathematical Logic 54 (1-2):161-172.
    We define a forcing poset which adds a club subset of a given fat stationary set S⊆ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq \omega_2}$$\end{document} with finite conditions, using S-adequate sets of models as side conditions. This construction, together with the general amalgamation results concerning S-adequate sets on which it is based, is substantially shorter and simpler than our original version in Krueger :119–136, 2014).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Rank-into-rank hypotheses and the failure of GCH.Vincenzo Dimonte & Sy-David Friedman - 2014 - Archive for Mathematical Logic 53 (3-4):351-366.
    In this paper we are concerned about the ways GCH can fail in relation to rank-into-rank hypotheses, i.e., very large cardinals usually denoted by I3, I2, I1 and I0. The main results are a satisfactory analysis of the way the power function can vary on regular cardinals in the presence of rank-into-rank hypotheses and the consistency under I0 of the existence of j:Vλ+1≺Vλ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j : V_{\lambda+1} {\prec} V_{\lambda+1}}$$\end{document} with the failure of GCH (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)[Omnibus Review].Kenneth Kunen - 1969 - Journal of Symbolic Logic 34 (3):515-516.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Suitable extender models II: Beyond ω-huge.W. Hugh Woodin - 2011 - Journal of Mathematical Logic 11 (2):115-436.
    We investigate large cardinal axioms beyond the level of ω-huge in context of the universality of the suitable extender models of [Suitable Extender Models I, J. Math. Log.10 101–339]. We show that there is an analog of ADℝ at the level of ω-huge, more precisely the construction of the minimum model of ADℝ generalizes to the level of Vλ+1. This allows us to formulate the indicated generalization of ADℝ and then to prove that if the axiom holds in V at (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Martin’s maximum revisited.Matteo Viale - 2016 - Archive for Mathematical Logic 55 (1-2):295-317.
    We present several results relating the general theory of the stationary tower forcing developed by Woodin with forcing axioms. In particular we show that, in combination with class many Woodin cardinals, the forcing axiom MM++ makes the Π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_2}$$\end{document}-fragment of the theory of Hℵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{\aleph_2}}$$\end{document} invariant with respect to stationary set preserving forcings that preserve BMM. We argue that this is a promising generalization to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • Forcing with Sequences of Models of Two Types.Itay Neeman - 2014 - Notre Dame Journal of Formal Logic 55 (2):265-298.
    We present an approach to forcing with finite sequences of models that uses models of two types. This approach builds on earlier work of Friedman and Mitchell on forcing to add clubs in cardinals larger than $\aleph_{1}$, with finite conditions. We use the two-type approach to give a new proof of the consistency of the proper forcing axiom. The new proof uses a finite support forcing, as opposed to the countable support iteration in the standard proof. The distinction is important (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Bounded forcing axioms as principles of generic absoluteness.Joan Bagaria - 2000 - Archive for Mathematical Logic 39 (6):393-401.
    We show that Bounded Forcing Axioms (for instance, Martin's Axiom, the Bounded Proper Forcing Axiom, or the Bounded Martin's Maximum) are equivalent to principles of generic absoluteness, that is, they assert that if a $\Sigma_1$ sentence of the language of set theory with parameters of small transitive size is forceable, then it is true. We also show that Bounded Forcing Axioms imply a strong form of generic absoluteness for projective sentences, namely, if a $\Sigma^1_3$ sentence with parameters is forceable, then (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)Proper forcing and remarkable cardinals II.Ralf-Dieter Schindler - 2001 - Journal of Symbolic Logic 66 (3):1481-1492.
    The current paper proves the results announced in [5]. We isolate a new large cardinal concept, "remarkability." Consistencywise, remarkable cardinals are between ineffable and ω-Erdos cardinals. They are characterized by the existence of "O # -like" embeddings; however, they relativize down to L. It turns out that the existence of a remarkable cardinal is equiconsistent with L(R) absoluteness for proper forcings. In particular, said absoluteness does not imply Π 1 1 determinacy.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Class forcing, the forcing theorem and Boolean completions.Peter Holy, Regula Krapf, Philipp Lücke, Ana Njegomir & Philipp Schlicht - 2016 - Journal of Symbolic Logic 81 (4):1500-1530.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Parameterized partition relations on the real numbers.Joan Bagaria & Carlos A. Di Prisco - 2009 - Archive for Mathematical Logic 48 (2):201-226.
    We consider several kinds of partition relations on the set ${\mathbb{R}}$ of real numbers and its powers, as well as their parameterizations with the set ${[\mathbb{N}]^{\mathbb{N}}}$ of all infinite sets of natural numbers, and show that they hold in some models of set theory. The proofs use generic absoluteness, that is, absoluteness under the required forcing extensions. We show that Solovay models are absolute under those forcing extensions, which yields, for instance, that in these models for every well ordered partition (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Proper forcing extensions and Solovay models.Joan Bagaria & Roger Bosch - 2004 - Archive for Mathematical Logic 43 (6):739-750.
    We study the preservation of the property of being a Solovay model under proper projective forcing extensions. We show that every strongly-proper forcing notion preserves this property. This yields that the consistency strength of the absoluteness of under strongly-proper forcing notions is that of the existence of an inaccessible cardinal. Further, the absoluteness of under projective strongly-proper forcing notions is consistent relative to the existence of a -Mahlo cardinal. We also show that the consistency strength of the absoluteness of under (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Solovay models and forcing extensions.Joan Bagaria & Roger Bosch - 2004 - Journal of Symbolic Logic 69 (3):742-766.
    We study the preservation under projective ccc forcing extensions of the property of L(ℝ) being a Solovay model. We prove that this property is preserved by every strongly-̰Σ₃¹ absolutely-ccc forcing extension, and that this is essentially the optimal preservation result, i.e., it does not hold for Σ₃¹ absolutely-ccc forcing notions. We extend these results to the higher projective classes of ccc posets, and to the class of all projective ccc posets, using definably-Mahlo cardinals. As a consequence we obtain an exact (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Coherent adequate forcing and preserving CH.John Krueger & Miguel Angel Mota - 2015 - Journal of Mathematical Logic 15 (2):1550005.
    We develop a general framework for forcing with coherent adequate sets on [Formula: see text] as side conditions, where [Formula: see text] is a cardinal of uncountable cofinality. We describe a class of forcing posets which we call coherent adequate type forcings. The main theorem of the paper is that any coherent adequate type forcing preserves CH. We show that there exists a forcing poset for adding a club subset of [Formula: see text] with finite conditions while preserving CH, solving (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
    We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On resurrection axioms.Konstantinos Tsaprounis - 2015 - Journal of Symbolic Logic 80 (2):587-608.
    The resurrection axioms are forms of forcing axioms that were introduced recently by Hamkins and Johnstone, who developed on earlier ideas of Chalons and Veličković. In this note, we introduce a stronger form of resurrection and show that it gives rise to families of axioms which are consistent relative to extendible cardinals, and which imply the strongest known instances of forcing axioms, such as Martin’s Maximum++. In addition, we study the unbounded resurrection postulates in terms of consistency lower bounds, obtaining, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Proper forcing and remarkable cardinals.Ralf-Dieter Schindler - 2000 - Bulletin of Symbolic Logic 6 (2):176-184.
    The present paper investigates the power of proper forcings to change the shape of the universe, in a certain well-defined respect. It turns out that the ranking among large cardinals can be used as a measure for that power. However, in order to establish the final result I had to isolate a new large cardinal concept, which I dubbed “remarkability.” Let us approach the exact formulation of the problem—and of its solution—at a slow pace.Breathtaking developments in the mid 1980s found (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations