Switch to: Citations

Add references

You must login to add references.
  1. Metamathematical investigation of intuitionistic arithmetic and analysis.Anne S. Troelstra - 1973 - New York,: Springer.
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Interpreting classical theories in constructive ones.Jeremy Avigad - 2000 - Journal of Symbolic Logic 65 (4):1785-1812.
    A number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of first- and second-order arithmetic, bounded arithmetic, and admissible set theory.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • First-Order Proof Theory of Arithmetic.Samuel R. Buss - 2000 - Bulletin of Symbolic Logic 6 (4):465-466.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A feasible theory for analysis.Fernando Ferreira - 1994 - Journal of Symbolic Logic 59 (3):1001-1011.
    We construct a weak second-order theory of arithmetic which includes Weak König's Lemma (WKL) for trees defined by bounded formulae. The provably total functions (with Σ b 1 -graphs) of this theory are the polynomial time computable functions. It is shown that the first-order strength of this version of WKL is exactly that of the scheme of collection for bounded formulae.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Free-variable axiomatic foundations of infinitesimal analysis: A fragment with finitary consistency proof.Rolando Chuaqui & Patrick Suppes - 1995 - Journal of Symbolic Logic 60 (1):122-159.
    In treatises or advanced textbooks on theoretical physics, it is apparent that the way mathematics is used is very different from what is to be found in books of mathematics. There is, for example, no close connection between books on analysis, on the one hand, and any classical textbook in quantum mechanics, for example, Schiff, [11], or quite recent books, for example Ryder, [10], on quantum field theory. The differences run a good deal deeper than the fact that the books (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Handbook of proof theory.Samuel R. Buss (ed.) - 1998 - New York: Elsevier.
    This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles come first; (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Developments in constructive nonstandard analysis.Erik Palmgren - 1998 - Bulletin of Symbolic Logic 4 (3):233-272.
    We develop a constructive version of nonstandard analysis, extending Bishop's constructive analysis with infinitesimal methods. A full transfer principle and a strong idealisation principle are obtained by using a sheaf-theoretic construction due to I. Moerdijk. The construction is, in a precise sense, a reduced power with variable filter structure. We avoid the nonconstructive standard part map by the use of nonstandard hulls. This leads to an infinitesimal analysis which includes nonconstructive theorems such as the Heine-Borel theorem, the Cauchy-Peano existence theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Gödel's Functional Interpretation.Jeremy Avigad & Solomon Feferman - 2000 - Bulletin of Symbolic Logic 6 (4):469-470.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Groundwork for weak analysis.António M. Fernandes & Fernando Ferreira - 2002 - Journal of Symbolic Logic 67 (2):557-578.
    This paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Formalizing forcing arguments in subsystems of second-order arithmetic.Jeremy Avigad - 1996 - Annals of Pure and Applied Logic 82 (2):165-191.
    We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen the conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths of proofs.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Functional interpretations of feasibly constructive arithmetic.Stephen Cook & Alasdair Urquhart - 1993 - Annals of Pure and Applied Logic 63 (2):103-200.
    A notion of feasible function of finite type based on the typed lambda calculus is introduced which generalizes the familiar type 1 polynomial-time functions. An intuitionistic theory IPVω is presented for reasoning about these functions. Interpretations for IPVω are developed both in the style of Kreisel's modified realizability and Gödel's Dialectica interpretation. Applications include alternative proofs for Buss's results concerning the classical first-order system S12 and its intuitionistic counterpart IS12 as well as proofs of some of Buss's conjectures concerning IS12, (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • An Effective Conservation Result for Nonstandard Arithmetic.Erik Palmgren - 2000 - Mathematical Logic Quarterly 46 (1):17-24.
    We prove that a nonstandard extension of arithmetic is effectively conservative over Peano arithmetic by using an internal version of a definable ultrapower. By the same method we show that a certain extension of the nonstandard theory with a saturation principle has the same proof-theoretic strength as second order arithmetic, where comprehension is restricted to arithmetical formulas.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals.Ulrich Kohlenbach - 1996 - Archive for Mathematical Logic 36 (1):31-71.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin's proof for Chebycheff approximation.Ulrich Kohlenbach - 1993 - Annals of Pure and Applied Logic 64 (1):27-94.
    Kohlenbach, U., Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin's proof for Chebycheff approximation, Annals of Pure and Applied Logic 64 27–94.We consider uniqueness theorems in classical analysis having the form u ε U, v1, v2 ε Vu = 0 = G→v 1 = v2), where U, V are complete separable metric spaces, Vu is compact in V and G:U x V → is a constructive function.If is proved by arithmetical means from analytical assumptions x (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations