Switch to: Citations

Add references

You must login to add references.
  1. Mathematical logic.Joseph Robert Shoenfield - 1967 - Reading, Mass.,: Addison-Wesley.
    8.3 The consistency proof -- 8.4 Applications of the consistency proof -- 8.5 Second-order arithmetic -- Problems -- Chapter 9: Set Theory -- 9.1 Axioms for sets -- 9.2 Development of set theory -- 9.3 Ordinals -- 9.4 Cardinals -- 9.5 Interpretations of set theory -- 9.6 Constructible sets -- 9.7 The axiom of constructibility -- 9.8 Forcing -- 9.9 The independence proofs -- 9.10 Large cardinals -- Problems -- Appendix The Word Problem -- Index.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • Handbook of proof theory.Samuel R. Buss (ed.) - 1998 - New York: Elsevier.
    This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles come first; (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (1 other version)Constructive set theory.John Myhill - 1975 - Journal of Symbolic Logic 40 (3):347-382.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.Kurt Gödel - 1958 - Dialectica 12 (3):280.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • (1 other version)Gödel's Functional Interpretation.Jeremy Avigad & Solomon Feferman - 2000 - Bulletin of Symbolic Logic 6 (4):469-470.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Godel's functional interpretation.Jeremy Avigad & Solomon Feferman - 1998 - In Samuel R. Buss (ed.), Handbook of proof theory. New York: Elsevier. pp. 337-405.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen.Justus Diller - 1974 - Archive for Mathematical Logic 16 (1-2):49-66.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Metamathematical investigation of intuitionistic arithmetic and analysis.Anne S. Troelstra - 1973 - New York,: Springer.
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • The Type Theoretic Interpretation of Constructive Set Theory.Peter Aczel, Angus Macintyre, Leszek Pacholski & Jeff Paris - 1984 - Journal of Symbolic Logic 49 (1):313-314.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • The strength of some Martin-Löf type theories.Edward Griffor & Michael Rathjen - 1994 - Archive for Mathematical Logic 33 (5):347-385.
    One objective of this paper is the determination of the proof-theoretic strength of Martin-Löf's type theory with a universe and the type of well-founded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with Δ 2 1 comprehension and bar induction. As Martin-Löf intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • A proof-theoretic characterization of the primitive recursive set functions.Michael Rathjen - 1992 - Journal of Symbolic Logic 57 (3):954-969.
    Let KP- be the theory resulting from Kripke-Platek set theory by restricting Foundation to Set Foundation. Let G: V → V (V:= universe of sets) be a ▵0-definable set function, i.e. there is a ▵0-formula φ(x, y) such that φ(x, G(x)) is true for all sets x, and $V \models \forall x \exists!y\varphi (x, y)$ . In this paper we shall verify (by elementary proof-theoretic methods) that the collection of set functions primitive recursive in G coincides with the collection of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (2 other versions)Choice Implies Excluded Middle.N. Goodman & J. Myhill - 1978 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 24 (25-30):461-461.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (2 other versions)Choice Implies Excluded Middle.N. D. Goodman & J. Myhill - 1975 - Zeitschrift Fur Mathematische Logik Und Grundlaaen der Mathematik 24:461.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)A Characterization of the Σ 1 -Definable Functions of KPω +.Wolfgang Burr & Volker Hartung - 2001 - Bulletin of Symbolic Logic 7 (4):532-533.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)From Frege to Gödel.Jean van Heijenoort - 1968 - Philosophy of Science 35 (1):72-72.
    Download  
     
    Export citation  
     
    Bookmark   160 citations  
  • Foundations of Constructive Mathematics.Michael J. Beeson - 1932 - Springer Verlag.
    Download  
     
    Export citation  
     
    Bookmark   48 citations