Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Discussion: Healey and Aharonov–Bohm.Tim Maudlin - 1998 - Philosophy of Science 65 (2):361-368.
    Richard Healey argues that the Aharonov-Bohm effect demands the recognition of either nonlocal or nonseparable physics in much the way that violations of Bell's inequality do. A careful examination of the effect and the arguments, though, shows that Healey's interpretation of the Aharonov-Bohm effect depends critically on his interpretation of gauge theories, and that the analogy with violations of Bell's inequalities fails.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Quantum Gravity.Carlo Rovelli - 2004 - Cambridge University Press.
    Quantum gravity poses the problem of merging quantum mechanics and general relativity, the two great conceptual revolutions in the physics of the twentieth century. The loop and spinfoam approach, presented in this book, is one of the leading research programs in the field. The first part of the book discusses the reformulation of the basis of classical and quantum Hamiltonian physics required by general relativity. The second part covers the basic technical research directions. Appendices include a detailed history of the (...)
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • (1 other version)General covariance, gauge theories and the kretschmann objection.John D. Norton - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Space-time as a physical quantity.Paul Teller - 1987 - In P. Achinstein & R. Kagon (eds.), Kelvin’s Baltimore Lectures and Modern Theoretical Physics. MIT Press. pp. 425--448.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Philosophy of Mathematics and Natural Science.Hermann Weyl - 1949 - Princeton, N.J.: Princeton University Press. Edited by Olaf Helmer-Hirschberg & Frank Wilczek.
    This is a book that no one but Weyl could have written--and, indeed, no one has written anything quite like it since.
    Download  
     
    Export citation  
     
    Bookmark   245 citations  
  • How is Quantum Field Theory Possible?Sunny Y. Auyang - 1995 - New York: Oxford University Press.
    Quantum field theory (QFT) combines quantum mechanics with Einstein's special theory of relativity and underlies elementary particle physics. This book presents a philosophical analysis of QFT. It is the first treatise in which the philosophies of space-time, quantum phenomena, and particle interactions are encompassed in a unified framework. Describing the physics in nontechnical terms, and schematically illustrating complex ideas, the book also serves as an introduction to fundamental physical theories. The philosophical interpretation both upholds the reality of the quantum world (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Absolute and relational theories of space and motion.Nick Huggett - 2008
    Since antiquity, natural philosophers have struggled to comprehend the nature of three tightly interconnected concepts: space, time, and motion. A proper understanding of motion, in particular, has been seen to be crucial for deciding questions about the natures of space and time, and their interconnections. Since the time of Newton and Leibniz, philosophers’ struggles to comprehend these concepts have often appeared to take the form of a dispute between absolute conceptions of space, time and motion, and relational conceptions. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)General covariance, gauge theories and the kretschmann objection.John D. Norton - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 110--123.
    How can we reconcile two claims that are now both widely accepted: Kretschmann's claim that a requirement of general covariance is physically vacuous and the standard view that the general covariance of general relativity expresses the physically important diffeomorphism gauge freedom of general relativity? I urge that both claims can be held without contradiction if we attend to the context in which each is made.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • What price spacetime substantivalism? The hole story.John Earman & John Norton - 1987 - British Journal for the Philosophy of Science 38 (4):515-525.
    Spacetime substantivalism leads to a radical form of indeterminism within a very broad class of spacetime theories which include our best spacetime theory, general relativity. Extending an argument from Einstein, we show that spacetime substantivalists are committed to very many more distinct physical states than these theories' equations can determine, even with the most extensive boundary conditions.
    Download  
     
    Export citation  
     
    Bookmark   278 citations  
  • (1 other version)Primitive thisness and primitive identity.Robert Merrihew Adams - 1979 - Journal of Philosophy 76 (1):5-26.
    Download  
     
    Export citation  
     
    Bookmark   251 citations  
  • (1 other version)Gauge Principles, Gauge Arguments and the Logic of Nature.Christopher A. Martin - 2002 - Philosophy of Science 69 (S3):S221-S234.
    I consider the question of how literally one can construe the “gauge argument,” which is the canonical means of understanding the putatively central import of local gauge symmetry principles for fundamental physics. As I argue, the gauge argument must be afforded a heuristic reading. Claims to the effect that the argument reflects a deep “logic of nature” must, for numerous reasons I discuss, be taken with a grain of salt.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The principles of gauging.Holger Lyre - 2001 - Philosophy of Science 68 (3):S371-S381.
    The aim of this paper is twofold: First, to present an examination of the principles underlying gauge field theories. I shall argue that there are two principles directly connected to the two well-known theorems of Emmy Noether concerning global and local symmetries of the free matter-field Lagrangian, in the following referred to as "conservation principle" and "gauge principle". Since both these express nothing but certain symmetry features of the free field theory, they are not sufficient to derive a true interaction (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Symmetry and gauge freedom.Gordon Belot - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (2):189-225.
    The classical field theories that underlie the quantum treatments of the electromagnetic, weak, and strong forces share a peculiar feature: specifying the initial state of the field determines the evolution of some degrees of freedom of the theory while leaving the evolution of some others wholly arbitrary. This strongly suggests that some of the variables of the standard state space lack physical content-intuitively, the space of states of such a theory is of higher dimension than the corresponding space of genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The interpretation of gauge symmetry.Michael Redhead - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 124--139.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • General covariance and the foundations of general relativity: Eight decades of dispute.John D. Norton - 1993 - Reports of Progress in Physics 56:791--861.
    iinstein oered the prin™iple of gener—l ™ov—ri—n™e —s the fund—ment—l physi™—l prin™iple of his gener—l theory of rel—tivityD —nd —s responsi˜le for extending the prin™iple of rel—tivity to —™™eler—ted motionF „his view w—s disputed —lmost immedi—tely with the ™ounterE™l—im th—t the prin™iple w—s no rel—tivity prin™iple —nd w—s physi™—lly v—™uousF „he dis—greeE ment persists tod—yF „his —rti™le reviews the development of iinstein9s thought on gener—l ™ov—ri—n™eD its rel—tion to the found—tions of gener—l rel—tivity —nd the evolution of the ™ontinuing de˜—te (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • (1 other version)Philosophy of Mathematics and Natural Science.Hermann Weyl & Olaf Helmer - 1951 - British Journal for the Philosophy of Science 2 (7):257-260.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Review of Sunny Y. Auyang: How is Quantum Field Theory Possible?[REVIEW]Michael Redhead - 1998 - British Journal for the Philosophy of Science 49 (3):499-507.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Foundations of Space-Time Theories.Michael Friedman - 1987 - Noûs 21 (4):595-601.
    Download  
     
    Export citation  
     
    Bookmark   241 citations  
  • (2 other versions)Foundations of Space-Time Theories.Robert Weingard - 1986 - Philosophy of Science 53 (2):286-299.
    Foundations of Space-Time Theories, by Michael Friedman, falls naturally into two parts. In the first, he presents the general framework within which he will characterize and discuss space-time theories, and then he devotes a chapter each to Newtonian physics, special relativity, and general relativity. Although there is some rich philosophical discussion along the way, these chapters are, of necessity, somewhat technical expositions of the general framework in action. It is in the second part, consisting of two substantial chapters, one on (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations