Switch to: Citations

References in:

Entropy - A Guide for the Perplexed

In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142 (2011)

Add references

You must login to add references.
  1. Twenty-one arguments against propensity analyses of probability.Antony Eagle - 2004 - Erkenntnis 60 (3):371–416.
    I argue that any broadly dispositional analysis of probability will either fail to give an adequate explication of probability, or else will fail to provide an explication that can be gainfully employed elsewhere (for instance, in empirical science or in the regulation of credence). The diversity and number of arguments suggests that there is little prospect of any successful analysis along these lines.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Reducing thermodynamics to statistical mechanics: The case of entropy.Craig Callender - 1999 - Journal of Philosophy 96 (7):348-373.
    This article argues that most of the approaches to the foundations of statistical mechanics have severed their link with the original foundational project, the project of demonstrating how real mechanical systems can behave thermodynamically.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • (1 other version)Why typicality does not explain the approach to equilibrium.Roman Frigg - 2010 - In Mauricio Suárez (ed.), Probabilities, Causes and Propensities in Physics. New York: Springer. pp. 77-93.
    Why do systems prepared in a non-equilibrium state approach, and eventually reach, equilibrium? An important contemporary version of the Boltzmannian approach to statistical mechanics answers this question by an appeal to the notion of typicality. The problem with this approach is that it comes in different versions, which are, however, not recognised as such, much less clearly distinguished, and we often find different arguments pursued side by side. The aim of this paper is to disentangle different versions of typicality-based explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (2 other versions)The Structure and Interpretation of Quantum Mechanics.R. I. G. Hughes - 1992 - Tijdschrift Voor Filosofie 54 (4):735-736.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • (1 other version)The Scientific Image by Bas C. van Fraassen. [REVIEW]Michael Friedman - 1982 - Journal of Philosophy 79 (5):274-283.
    Download  
     
    Export citation  
     
    Bookmark   919 citations  
  • (2 other versions)A Philosophical Guide to Conditionals.Jonathan Bennett - 2003 - Bulletin of Symbolic Logic 10 (4):565-570.
    Download  
     
    Export citation  
     
    Bookmark   256 citations  
  • Entropy in Relation to Incomplete Knowledge.K. G. Denbigh, J. S. Denbigh & H. D. Zeh - 1991 - British Journal for the Philosophy of Science 42 (1):111-144.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Aspects of determinism in modern physics.John Earman - 1977 - In Jeremy Butterfield & John Earman (eds.).
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics.Lawrence Sklar - 1993 - New York: Cambridge University Press.
    Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the very notion (...)
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • In What Sense is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour?—Bridging the Gap Between Dynamical Systems Theory and Communication Theory.Roman Frigg - 2004 - British Journal for the Philosophy of Science 55 (3):411-434.
    On an influential account, chaos is explained in terms of random behaviour; and random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai entropy (KSE). Though intuitively plausible, the association of the KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. I provide this justification for the case of Hamiltonian systems by proving that the KSE is equivalent to a generalized version of Shannon's (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Who is a Modeler?Michael Weisberg - 2007 - British Journal for the Philosophy of Science 58 (2):207-233.
    Many standard philosophical accounts of scientific practice fail to distinguish between modeling and other types of theory construction. This failure is unfortunate because there are important contrasts among the goals, procedures, and representations employed by modelers and other kinds of theorists. We can see some of these differences intuitively when we reflect on the methods of theorists such as Vito Volterra and Linus Pauling on the one hand, and Charles Darwin and Dimitri Mendeleev on the other. Much of Volterra's and (...)
    Download  
     
    Export citation  
     
    Bookmark   220 citations  
  • Philosophical Theories of Probability.Donald Gillies - 2000 - New York: Routledge.
    The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. _Philosophical Theories of Probability_ is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.
    Download  
     
    Export citation  
     
    Bookmark   186 citations  
  • (1 other version)The emergence and interpretation of probability in Bohmian mechanics.Craig Callender - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):351-370.
    A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Probability in GRW theory.Roman Frigg & Carl Hoefer - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):371-389.
    GRW Theory postulates a stochastic mechanism assuring that every so often the wave function of a quantum system is `hit', which leaves it in a localised state. How are we to interpret the probabilities built into this mechanism? GRW theory is a firmly realist proposal and it is therefore clear that these probabilities are objective probabilities (i.e. chances). A discussion of the major theories of chance leads us to the conclusion that GRW probabilities can be understood only as either single (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Quantum probability and many worlds.Meir Hemmo & Itamar Pitowsky - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Quantum Computation and Quantum Information.Michael A. Nielsen & Isaac L. Chuang - 2000 - Cambridge University Press.
    First-ever comprehensive introduction to the major new subject of quantum computing and quantum information.
    Download  
     
    Export citation  
     
    Bookmark   179 citations  
  • Quantum probabilities as Bayesian probabilities.Carlton M. Caves - 2002 - Physical Review A 65:022305.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements.Carlton M. Caves, Christopher A. Fuchs, Kiran K. Manne & Joseph M. Renes - 2004 - Foundations of Physics 34 (2):193-209.
    We prove a Gleason-type theorem for the quantum probability rule using frame functions defined on positive-operator-valued measures, as opposed to the restricted class of orthogonal projection-valued measures used in the original theorem. The advantage of this method is that it works for two-dimensional quantum systems and even for vector spaces over rational fields—settings where the standard theorem fails. Furthermore, unlike the method necessary for proving the original result, the present one is rather elementary. In the case of a qubit, we (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   496 citations  
  • The Problem of Irreversibility.John Earman - 1986 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986:226 - 233.
    After reviewing recent literature from physics and philosophy, it is concluded that we are still far from having a satisfying explanation of the nature and origins of irreversibility. It is proposed that the most fruitful approach to this problem is to concentrate on conditions needed for a rigorous derivation of the Boltzmann equation.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Theories of Probability.Terrence Fine - 1973 - Academic Press.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • (2 other versions)Re-conceiving quantum theories in terms of information-theoretic constraints.Armond Duwell - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):181-201.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mises redux.Richard C. Jeffrey - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • What does the free will theorem actually prove?Sheldon Goldstein - unknown
    Conway and Kochen have presented a “free will theorem” [4, 6] which they claim shows that “if indeed we humans have free will, then [so do] elementary particles.” In a more precise fashion, they claim it shows that for certain quantum experiments in which the experimenters can choose between several options, no deterministic or stochastic model can account for the observed outcomes without violating a condition “MIN” motivated by relativistic symmetry. We point out that for stochastic models this conclusion is (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Deterministic chaos and the nature of chance.John A. Winnie - 1996 - In John Earman & John D. Norton (eds.), The Cosmos of Science: Essays of Exploration. University of Pitsburgh Press. pp. 299--324.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Quantum theory and the schism in physics.Karl Raimund Popper - 1992 - New York: Routledge.
    The basic theme of Popper's philosophy--that something can come from nothing--is related to the present situation in physical theory. Popper carries his investigation right to the center of current debate in quantum physics. He proposes an interpretation of physics--and indeed an entire cosmology--which is realist, conjectural, deductivist and objectivist, anti-positivist, and anti-instrumentalist. He stresses understanding, reminding us that our ignorance grows faster than our conjectural knowledge.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • A better best system account of lawhood.Jonathan Cohen & Craig Callender - 2009 - Philosophical Studies 145 (1):1 - 34.
    Perhaps the most significant contemporary theory of lawhood is the Best System (/MRL) view on which laws are true generalizations that best systematize knowledge. Our question in this paper will be how best to formulate a theory of this kind. We’ll argue that an acceptable MRL should (i) avoid inter-system comparisons of simplicity, strength, and balance, (ii) make lawhood epistemically accessible, and (iii) allow for laws in the special sciences. Attention to these problems will bring into focus a useful menu (...)
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Causal determinism.Carl Hoefer - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • What is Probability?Simon Saunders - 2004 - Arxiv Preprint Quant-Ph/0412194.
    Probabilities may be subjective or objective; we are concerned with both kinds of probability, and the relationship between them. The fundamental theory of objective probability is quantum mechanics: it is argued that neither Bohr's Copenhagen interpretation, nor the pilot-wave theory, nor stochastic state-reduction theories, give a satisfactory answer to the question of what objective probabilities are in quantum mechanics, or why they should satisfy the Born rule; nor do they give any reason why subjective probabilities should track objective ones. But (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Probability in Boltzmannian statistical mechanics.Roman Frigg - 2010 - In Gerhard Ernst & Andreas Hüttemann (eds.), Time, chance and reduction: philosophical aspects of statistical mechanics. New York: Cambridge University Press.
    In two recent papers Barry Loewer (2001, 2004) has suggested to interpret probabilities in statistical mechanics as Humean chances in David Lewis’ (1994) sense. I first give a precise formulation of this proposal, then raise two fundamental objections, and finally conclude that these can be overcome only at the price of interpreting these probabilities epistemically.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Scientific representation and the semantic view of theories.Roman Frigg - 2006 - Theoria 21 (1):49-65.
    It is now part and parcel of the official philosophical wisdom that models are essential to the acquisition and organisation of scientific knowledge. It is also generally accepted that most models represent their target systems in one way or another. But what does it mean for a model to represent its target system? I begin by introducing three conundrums that a theory of scientific representation has to come to terms with and then address the question of whether the semantic view (...)
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (3):417-470.
    Philosophical reflection on quantum field theory has tended to focus on how it revises our conception of what a particle is. However, there has been relatively little discussion of the threat to the "reality" of particles posed by the possibility of inequivalent quantizations of a classical field theory, i.e., inequivalent representations of the algebra of observables of the field in terms of operators on a Hilbert space. The threat is that each representation embodies its own distinctive conception of what a (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Why special relativity should not be a template for a fundamental reformulation of quantum mechanics.Harvey R. Brown & Christopher G. Timpson - 2006 - In William Demopoulos & Itamar Pitowsky (eds.), Physical Theory and its Interpretation. Springer. pp. 29-42.
    In a comparison of the principles of special relativity and of quantum mechanics, the former theory is marked by its relative economy and apparent explanatory simplicity. A number of theorists have thus been led to search for a small number of postulates - essentially information theoretic in nature - that would play the role in quantum mechanics that the relativity principle and the light postulate jointly play in Einstein's 1905 special relativity theory. The purpose of the present paper is to (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Is logic empirical?Guido Bacciagaluppi - unknown
    The philosophical debate about quantum logic between the late 1960s and the early 1980s was generated mainly by Putnam's claims that quantum mechanics empirically motivates introducing a new form of logic, that such an empirically founded quantum logic is the `true' logic, and that adopting quantum logic would resolve all the paradoxes of quantum mechanics. Most of that debate focussed on the latter claim, reaching the conclusion that it was mistaken. This chapter will attempt to clarify the possible misunderstandings surrounding (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The status of the principle of maximum entropy.Abner Shimony - 1985 - Synthese 63 (1):35 - 53.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Time, quantum mechanics, and decoherence.Simon Saunders - 1995 - Synthese 102 (2):235 - 266.
    State-reduction and the notion of actuality are compared to passage through time and the notion of the present; already in classical relativity the latter give rise to difficulties. The solution proposed here is to treat both tense and value-definiteness as relational properties or facts as relations; likewise the notions of change and probability. In both cases essential characteristics are absent: temporal relations are tenselessly true; probabilistic relations are deterministically true. The basic ideas go back to Everett, although the technical development (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The Dome: An Unexpectedly Simple Failure of Determinism.John D. Norton - 2008 - Philosophy of Science 75 (5):786-798.
    Newton’s equations of motion tell us that a mass at rest at the apex of a dome with the shape specified here can spontaneously move. It has been suggested that this indeterminism should be discounted since it draws on an incomplete rendering of Newtonian physics, or it is “unphysical,” or it employs illicit idealizations. I analyze and reject each of these reasons. †To contact the author, please write to: Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Laws and statistical mechanics.Eric Winsberg - 2004 - Philosophy of Science 71 (5):707-718.
    This paper explores some connections between competing conceptions of scientific laws on the one hand, and a problem in the foundations of statistical mechanics on the other. I examine two proposals for understanding the time asymmetry of thermodynamic phenomenal: David Albert's recent proposal and a proposal that I outline based on Hans Reichenbach's “branch systems”. I sketch an argument against the former, and mount a defense of the latter by showing how to accommodate statistical mechanics to recent developments in the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Consequences of a simple extension of the dutch book argument.J. M. Ryder - 1981 - British Journal for the Philosophy of Science 32 (2):164-167.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)The propensity interpretation of probability.Karl R. Popper - 1959 - British Journal for the Philosophy of Science 10 (37):25-42.
    Download  
     
    Export citation  
     
    Bookmark   240 citations  
  • (1 other version)David Lewis’s Humean Theory of Objective Chance.Barry Loewer - 2004 - Philosophy of Science 71 (5):1115--25.
    The most important theories in fundamental physics, quantum mechanics and statistical mechanics, posit objective probabilities or chances. As important as chance is there is little agreement about what it is. The usual “interpretations of probability” give very different accounts of chance and there is disagreement concerning which, if any, is capable of accounting for its role in physics. David Lewis has contributed enormously to improving this situation. In his classic paper “A Subjectivist's Guide to Objective Chance” he described a framework (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Models and representation.Richard Hughes - 1997 - Philosophy of Science 64 (4):336.
    A general account of modeling in physics is proposed. Modeling is shown to involve three components: denotation, demonstration, and interpretation. Elements of the physical world are denoted by elements of the model; the model possesses an internal dynamic that allows us to demonstrate theoretical conclusions; these in turn need to be interpreted if we are to make predictions. The DDI account can be readily extended in ways that correspond to different aspects of scientific practice.
    Download  
     
    Export citation  
     
    Bookmark   207 citations  
  • The Third Way on Objective Probability: A Sceptic's Guide to Objective Chance.Carl Hoefer - 2007 - Mind 116 (463):549-596.
    The goal of this paper is to sketch and defend a new interpretation or 'theory' of objective chance, one that lets us be sure such chances exist and shows how they can play the roles we traditionally grant them. The account is 'Humean' in claiming that objective chances supervene on the totality of actual events, but does not imply or presuppose a Humean approach to other metaphysical issues such as laws or causation. Like Lewis (1994) I take the Principal Principle (...)
    Download  
     
    Export citation  
     
    Bookmark   136 citations  
  • Star and perp: Two treatments of negation.J. Michael Dunn - 1993 - Philosophical Perspectives 7:331-357.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Independently Motivating the Kochen—Dieks Modal Interpretation of Quantum Mechanics.Rob Clifton - 1995 - British Journal for the Philosophy of Science 46 (1):33-57.
    The distinguishing feature of ‘modal’ interpretations of quantum mechanics is their abandonment of the orthodox eigenstate–eigenvalue rule, which says that an observable possesses a definite value if and only if the system is in an eigenstate of that observable. Kochen's and Dieks' new biorthogonal decomposition rule for picking out which observables have definite values is designed specifically to overcome the chief problem generated by orthodoxy's rule, the measurement problem, while avoiding the no-hidden-variable theorems. Otherwise, their new rule seems completely ad (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • What is 'the problem of the direction of time'?Craig Callender - 1997 - Philosophy of Science 64 (4):234.
    This paper searches for an explicit expression of the so-called problem of the direction of time. I argue that the traditional version of the problem is an artifact of a mistaken view in the foundations of statistical mechanics, and that to the degree it is a problem, it is really one general to all the special sciences. I then search the residue of the traditional problem for any remaining difficulty particular to time's arrow and find that there is a special (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Von Neumann's projection postulate as a probability conditionalization rule in quantum mechanics.Jeffrey Bub - 1977 - Journal of Philosophical Logic 6 (1):381 - 390.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Error and the Growth of Experimental Knowledge.Deborah G. Mayo - 1996 - University of Chicago.
    This text provides a critique of the subjective Bayesian view of statistical inference, and proposes the author's own error-statistical approach as an alternative framework for the epistemology of experiment. It seeks to address the needs of researchers who work with statistical analysis.
    Download  
     
    Export citation  
     
    Bookmark   228 citations  
  • (1 other version)Models and Analogies in Science.Mary B. Hesse - 1966 - Philosophy and Rhetoric 3 (3):190-191.
    Download  
     
    Export citation  
     
    Bookmark   417 citations