Switch to: Citations

References in:

Entropy - A Guide for the Perplexed

In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142 (2011)

Add references

You must login to add references.
  1. Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief.James M. Joyce - 2009 - In Franz Huber & Christoph Schmidt-Petri (eds.), Degrees of belief. London: Springer. pp. 263-297.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • The natural-range conception of probability.Jacob Rosenthal - 2010 - In Gerhard Ernst & Andreas Hüttemann (eds.), Time, chance and reduction: philosophical aspects of statistical mechanics. New York: Cambridge University Press. pp. 71--90.
    Objective interpretations of probability are usually discussed in two varieties: frequency and propensity accounts. But there is a third, neglected possibility, namely, probabilities as deriving from ranges in suitably structured initial state spaces. Roughly, the probability of an event is the proportion of initial states that lead to this event in the space of all possible initial states, provided that this proportion is approximately the same in any not too small interval of the initial state space. This idea can also (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Time, chance and reduction: philosophical aspects of statistical mechanics.Gerhard Ernst & Andreas Hüttemann (eds.) - 2010 - New York: Cambridge University Press.
    Statistical mechanics attempts to explain the behaviour of macroscopic physical systems in terms of the mechanical properties of their constituents. Although it is one of the fundamental theories of physics, it has received little attention from philosophers of science. Nevertheless, it raises philosophical questions of fundamental importance on the nature of time, chance and reduction. Most philosophical issues in this domain relate to the question of the reduction of thermodynamics to statistical mechanics. This book addresses issues inherent in this reduction: (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A propensity interpretation of probability.Karl Popper - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Truth and probability.Frank Ramsey - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 52-94.
    Download  
     
    Export citation  
     
    Bookmark   597 citations  
  • Mises redux.Richard C. Jeffrey - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A subjectivist’s guide to objective chance.David K. Lewis - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 263-293.
    Download  
     
    Export citation  
     
    Bookmark   603 citations  
  • Philosophy of Probability: Contemporary Readings.Antony Eagle (ed.) - 2010 - New York: Routledge.
    _Philosophy of Probability: Contemporary Readings_ is the first anthology to collect essential readings in this important area of philosophy. Featuring the work of leading philosophers in the field such as Carnap, Hájek, Jeffrey, Joyce, Lewis, Loewer, Popper, Ramsey, van Fraassen, von Mises, and many others, the book looks in depth at the following key topics: subjective probability and credence probability updating: conditionalization and reflection Bayesian confirmation theory classical, logical, and evidential probability frequentism physical probability: propensities and objective chances. The book (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Bell’s Theorem.Abner Shimony - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Probability: A Philosophical Introduction.D. H. Mellor - 2004 - Routledge.
    This book: * assumes no mathematical background and keeps the technicalities to a minimum * explains the most important applications of probability theory to ...
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Philosophical Theories of Probability.Donald A. Gillies - 2000 - New York: Routledge.
    The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability. _Philosophical Theories of Probability_ is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.
    Download  
     
    Export citation  
     
    Bookmark   186 citations  
  • Entanglement, Upper Probabilities and Decoherence in Quantum Mechanics.Patrick Suppes & Stephan Hartmann - 2009 - In Mauro Dorato et al (ed.), EPSA 2007: Launch of the European Philosophy of Science Association. Springer. pp. 93--103.
    Quantum mechanical entangled configurations of particles that do not satisfy Bell’s inequalities, or equivalently, do not have a joint probability distribution, are familiar in the foundational literature of quantum mechanics. Nonexistence of a joint probability measure for the correlations predicted by quantum mechanics is itself equivalent to the nonexistence of local hidden variables that account for the correlations (for a proof of this equivalence, see Suppes and Zanotti, 1981). From a philosophical standpoint it is natural to ask what sort of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Mathematical Theory of Communication.Claude Elwood Shannon - 1948 - Bell System Technical Journal 27 (April 1924):379–423.
    The mathematical theory of communication.
    Download  
     
    Export citation  
     
    Bookmark   1196 citations  
  • Theories of Probability.Terrence Fine - 1973 - Academic Press.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • In Defence of Objective Bayesianism.Jon Williamson - 2010 - Oxford University Press.
    Objective Bayesianism is a methodological theory that is currently applied in statistics, philosophy, artificial intelligence, physics and other sciences. This book develops the formal and philosophical foundations of the theory, at a level accessible to a graduate student with some familiarity with mathematical notation.
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • Symmetry and its Discontents: Essays on the History of Inductive Probability.Sandy L. Zabell - 2005 - Cambridge University Press.
    This volume brings together a collection of essays on the history and philosophy of probability and statistics by one of the eminent scholars in these subjects. Written over the last fifteen years, they fall into three broad categories. The first deals with the use of symmetry arguments in inductive probability, in particular, their use in deriving rules of succession. The second group deals with four outstanding individuals who made lasting contributions to probability and statistics in very different ways: Frank Ramsey, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The foundations of scientific inference.Wesley C. Salmon - 1967 - [Pittsburgh]: University of Pittsburgh Press.
    Not since Ernest Nagel’s 1939 monograph on the theory of probability has there been a comprehensive elementary survey of the philosophical problems of probablity and induction. This is an authoritative and up-to-date treatment of the subject, and yet it is relatively brief and nontechnical. Hume’s skeptical arguments regarding the justification of induction are taken as a point of departure, and a variety of traditional and contemporary ways of dealing with this problem are considered. The author then sets forth his own (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Probability: A Philosophical Introduction.D. H. Mellor - 2004 - Routledge.
    _Probability: A Philosophical Introduction_ introduces and explains the principal concepts and applications of probability. It is intended for philosophers and others who want to understand probability as we all apply it in our working and everyday lives. The book is not a course in mathematical probability, of which it uses only the simplest results, and avoids all needless technicality. The role of probability in modern theories of knowledge, inference, induction, causation, laws of nature, action and decision-making makes an understanding of (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Scientific reasoning: the Bayesian approach.Peter Urbach & Colin Howson - 1993 - Chicago: Open Court. Edited by Peter Urbach.
    Scientific reasoning is—and ought to be—conducted in accordance with the axioms of probability. This Bayesian view—so called because of the central role it accords to a theorem first proved by Thomas Bayes in the late eighteenth ...
    Download  
     
    Export citation  
     
    Bookmark   575 citations  
  • The status of the principle of maximum entropy.Abner Shimony - 1985 - Synthese 63 (1):35 - 53.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mathematics and plausible reasoning.George Pólya - 1954 - Princeton, N.J.,: Princeton University Press.
    2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • The direction of time.Hans Reichenbach - 1956 - Mineola, N.Y.: Dover Publications. Edited by Maria Reichenbach.
    The final work of a distinguished physicist, this remarkable volume examines the emotive significance of time, the time order of mechanics, the time direction of thermodynamics and microstatistics, the time direction of macrostatistics, and the time of quantum physics. Coherent discussions include accounts of analytic methods of scientific philosophy in the investigation of probability, quantum mechanics, the theory of relativity, and causality. "[Reichenbach’s] best by a good deal."—Physics Today. 1971 ed.
    Download  
     
    Export citation  
     
    Bookmark   469 citations  
  • The Logic of Thermostatistical Physics.Gerard G. Emch & Chuang Liu - 2002 - Springer Verlag.
    This book is devoted to a thorough analysis of the role that models play in the practise of physical theory. The authors, a mathematical physicist and a philosopher of science, appeal to the logicians’ notion of model theory as well as to the concepts of physicists.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Physics and philosophy: the revolution in modern science.Werner Heisenberg - 1958 - Amherst, N.Y.: Prometheus Books.
    Presents German physicist Werner Heisenberg's 1958 text in which he discusses the philosophical implications and social consequences of quantum mechanics and other physical theories.
    Download  
     
    Export citation  
     
    Bookmark   186 citations  
  • Physics and Philosophy: The Revolution in Modern Science.Werner Heisenberg - 1958 - New York: Harper.
    The seminal work by one of the most important thinkers of the twentieth century, Physics and Philosophy is Werner Heisenberg's concise and accessible narrative of the revolution in modern physics, in which he played a towering role. The outgrowth of a celebrated lecture series, this book remains as relevant, provocative, and fascinating as when it was first published in 1958. A brilliant scientist whose ideas altered our perception of the universe, Heisenberg is considered the father of quantum physics; he is (...)
    Download  
     
    Export citation  
     
    Bookmark   279 citations  
  • Philosophical problems of space and time.Adolf Grünbaum - 1963 - Boston,: Reidel.
    Download  
     
    Export citation  
     
    Bookmark   203 citations  
  • Error and the Growth of Experimental Knowledge.Deborah G. Mayo - 1996 - University of Chicago.
    This text provides a critique of the subjective Bayesian view of statistical inference, and proposes the author's own error-statistical approach as an alternative framework for the epistemology of experiment. It seeks to address the needs of researchers who work with statistical analysis.
    Download  
     
    Export citation  
     
    Bookmark   228 citations  
  • Physical Theory and its Interpretation: Essays in Honor of Jeffrey Bub.William Demopoulos & Itamar Pitowsky (eds.) - 2006 - Springer.
    The essays in this volume were written by leading researchers on classical mechanics, statistical mechanics, quantum theory, and relativity. They detail central topics in the foundations of physics, including the role of symmetry principles in classical and quantum physics, Einstein's hole argument in general relativity, quantum mechanics and special relativity, quantum correlations, quantum logic, and quantum probability and information.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Models and Analogies in Science.Mary B. Hesse - 1963 - [Notre Dame, Ind.]: University of Notre Dame Press.
    Download  
     
    Export citation  
     
    Bookmark   377 citations  
  • Laws and statistical mechanics.Eric Winsberg - 2004 - Philosophy of Science 71 (5):707-718.
    This paper explores some connections between competing conceptions of scientific laws on the one hand, and a problem in the foundations of statistical mechanics on the other. I examine two proposals for understanding the time asymmetry of thermodynamic phenomenal: David Albert's recent proposal and a proposal that I outline based on Hans Reichenbach's “branch systems”. I sketch an argument against the former, and mount a defense of the latter by showing how to accommodate statistical mechanics to recent developments in the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Can conditioning on the “past hypothesis” militate against the reversibility objections?Eric Winsberg - 2004 - Philosophy of Science 71 (4):489-504.
    In his recent book, Time and Chance, David Albert claims that by positing that there is a uniform probability distribution defined, on the standard measure, over the space of microscopic states that are compatible with both the current macrocondition of the world, and with what he calls the “past hypothesis”, we can explain the time asymmetry of all of the thermodynamic behavior in the world. The principal purpose of this paper is to dispute this claim. I argue that Albert's proposal (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • What Are the New Implications of Chaos for Unpredictability?Charlotte Werndl - 2009 - British Journal for the Philosophy of Science 60 (1):195-220.
    From the beginning of chaos research until today, the unpredictability of chaos has been a central theme. It is widely believed and claimed by philosophers, mathematicians and physicists alike that chaos has a new implication for unpredictability, meaning that chaotic systems are unpredictable in a way that other deterministic systems are not. Hence, one might expect that the question ‘What are the new implications of chaos for unpredictability?’ has already been answered in a satisfactory way. However, this is not the (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Justifying definitions in mathematics—going beyond Lakatos.Charlotte Werndl - 2009 - Philosophia Mathematica 17 (3):313-340.
    This paper addresses the actual practice of justifying definitions in mathematics. First, I introduce the main account of this issue, namely Lakatos's proof-generated definitions. Based on a case study of definitions of randomness in ergodic theory, I identify three other common ways of justifying definitions: natural-world justification, condition justification, and redundancy justification. Also, I clarify the interrelationships between the different kinds of justification. Finally, I point out how Lakatos's ideas are limited: they fail to show how various kinds of justification (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Are deterministic descriptions and indeterministic descriptions observationally equivalent?Charlotte Werndl - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):232-242.
    The central question of this paper is: are deterministic and indeterministic descriptions observationally equivalent in the sense that they give the same predictions? I tackle this question for measure-theoretic deterministic systems and stochastic processes, both of which are ubiquitous in science. I first show that for many measure-theoretic deterministic systems there is a stochastic process which is observationally equivalent to the deterministic system. Conversely, I show that for all stochastic processes there is a measure-theoretic deterministic system which is observationally equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Who is a Modeler?Michael Weisberg - 2007 - British Journal for the Philosophy of Science 58 (2):207-233.
    Many standard philosophical accounts of scientific practice fail to distinguish between modeling and other types of theory construction. This failure is unfortunate because there are important contrasts among the goals, procedures, and representations employed by modelers and other kinds of theorists. We can see some of these differences intuitively when we reflect on the methods of theorists such as Vito Volterra and Linus Pauling on the one hand, and Charles Darwin and Dimitri Mendeleev on the other. Much of Volterra's and (...)
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a view (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation.David Wallace - 2006 - British Journal for the Philosophy of Science 57 (4):655-689.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective probability and the Principal Principle 2.2 Three ways of (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • The Significance of the Ergodic Decomposition of Stationary Measures for the Interpretation of Probability.Jan Von Plato - 1982 - Synthese 53 (3):419 - 432.
    De Finetti's representation theorem is a special case of the ergodic decomposition of stationary probability measures. The problems of the interpretation of probabilities centred around de Finetti's theorem are extended to this more general situation. The ergodic decomposition theorem has a physical background in the ergodic theory of dynamical systems. Thereby the interpretations of probabilities in the cases of de Finetti's theorem and its generalization and in ergodic theory are systematically connected to each other.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The method of arbitrary functions.Jan von Plato - 1983 - British Journal for the Philosophy of Science 34 (1):37-47.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The Scientific Image by Bas C. van Fraassen. [REVIEW]Michael Friedman - 1982 - Journal of Philosophy 79 (5):274-283.
    Download  
     
    Export citation  
     
    Bookmark   919 citations  
  • Ergodic theory, interpretations of probability and the foundations of statistical mechanics.Janneke van Lith - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):581--94.
    The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time averages (albeit for a special class of systems, and up to a measure zero set of exceptions). Secondly, one argues that actual measurements of thermodynamic quantities yield time averaged quantities, since measurements take a long time. The combination of these (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Is there a stability problem for Bayesian noncommutative probabilities?Giovanni Valente - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):832-843.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Can the maximum entropy principle be explained as a consistency requirement?Jos Uffink - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (3):223-261.
    The principle of maximum entropy is a general method to assign values to probability distributions on the basis of partial information. This principle, introduced by Jaynes in 1957, forms an extension of the classical principle of insufficient reason. It has been further generalized, both in mathematical formulation and in intended scope, into the principle of maximum relative entropy or of minimum information. It has been claimed that these principles are singled out as unique methods of statistical inference that agree with (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The constraint rule of the maximum entropy principle.Jos Uffink - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (1):47-79.
    The principle of maximum entropy is a method for assigning values to probability distributions on the basis of partial information. In usual formulations of this and related methods of inference one assumes that this partial information takes the form of a constraint on allowed probability distributions. In practical applications, however, the information consists of empirical data. A constraint rule is then employed to construct constraints on probability distributions out of these data. Usually one adopts the rule that equates the expectation (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Bluff Your Way in the Second Law of Thermodynamics.Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (3):305-394.
    The aim of this article is to analyse the relation between the second law of thermodynamics and the so-called arrow of time. For this purpose, a number of different aspects in this arrow of time are distinguished, in particular those of time-reversal (non-)invariance and of (ir)reversibility. Next I review versions of the second law in the work of Carnot, Clausius, Kelvin, Planck, Gibbs, Caratheodory and Lieb and Yngvason, and investigate their connection with these aspects of the arrow of time. It (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Comment on “The Free Will Theorem”.Roderich Tumulka - 2007 - Foundations of Physics 37 (2):186-197.
    In a recent paper Conway and Kochen, Found. Phys. 36, 2006, claim to have established that theories of the Ghirardi-Rimini-Weber (RW) type, i.e., of spontaneous wave function collapse, cannot be made relativistic. On the other hand, relativistic GRW-type theories have already been presented, in my recent paper, J. Stat. Phys. 125, 2006, and by Dowker and Henson, J. Stat. Phys. 115, 2004. Here, I elucidate why these are not excluded by the arguments of Conway and Kochen.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Problem of Time’s Arrow Historico-critically Reexamined.Roberto Torretti - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):732-756.
    Responding to Hasok Chang’s vision of the history and philosophy of science as the continuation of science by other means, I illustrate the methods of HPS and their utility through a historico-critical examination of the problem of “time’s arrow‘, that is to say, the problem posed by the claim by Boltzmann and others that the temporal asymmetry of many physical processes and indeed the very possibility of identifying each of the two directions we distinguish in time must have a ground (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations