Switch to: Citations

Add references

You must login to add references.
  1. The Principles of Quantum Mechanics.P. A. M. Dirac - 1936 - Revue de Métaphysique et de Morale 43 (2):5-5.
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • (1 other version)Quantum Mechanics and Experience.[author unknown] - 1994 - Erkenntnis 40 (3):403-406.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Wave Function Ontology.Bradley Monton - 2002 - Synthese 130 (2):265-277.
    I argue that the wave function ontology for quantum mechanics is an undesirable ontology. This ontology holds that the fundamental space in which entities evolve is not three-dimensional, but instead 3N-dimensional, where N is the number of particles standardly thought to exist in three-dimensional space. I show that the state of three-dimensional objects does not supervene on the state of objects in 3N-dimensional space. I also show that the only way to guarantee the existence of the appropriate mental states in (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Elementary Quantum Metaphysics.David Albert - 1996 - In James T. Cushing, Arthur Fine & Sheldon Goldstein (eds.), Bohmian mechanics and quantum theory: an appraisal. Springer. pp. 277-284.
    Once upon a time, the twentieth-century investigations of the behaviors of sub-atomic particles were thought to have established that there can be no such thing as an objective, observer-independent, scientifically realist, empirically adequate picture of the physical world.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • (1 other version)Many Worlds?: Everett, Quantum Theory, & Reality.Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.) - 2010 - Oxford, GB: Oxford University Press UK.
    What would it mean to apply quantum theory, without restriction and without involving any notion of measurement and state reduction, to the whole universe? What would realism about the quantum state then imply? This book brings together an illustrious team of philosophers and physicists to debate these questions. The contributors broadly agree on the need, or aspiration, for a realist theory that unites micro- and macro-worlds. But they disagree on what this implies. Some argue that if unitary quantum evolution has (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • The Character of Physical Law.Richard Phillips Feynman - 1965 - MIT Press.
    The law of gravitation, an example of physical law The relation of mathematics to physics The great conservation principles Symmetry in physical law The distinction of past and future Probability and uncertainty: the quantum mechanical view of nature Seeking new laws.
    Download  
     
    Export citation  
     
    Bookmark   327 citations  
  • (1 other version)”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   298 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   496 citations  
  • (1 other version)Against ”Measurement'.J. S. Bell - 2004 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 213--231.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • “Forget time”: Essay written for the FQXi contest on the Nature of Time.Carlo Rovelli - 2011 - Foundations of Physics 41 (9):1475-1490.
    Following a line of research that I have developed for several years, I argue that the best strategy for understanding quantum gravity is to build a picture of the physical world where the notion of time plays no role at all. I summarize here this point of view, explaining why I think that in a fundamental description of nature we must “forget time”, and how this can be done in the classical and in the quantum theory. The idea is to (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (1 other version)A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables, I and II.David Bohm - 1952 - Physical Review (85):166-193.
    Download  
     
    Export citation  
     
    Bookmark   317 citations  
  • Zur Quantenmechanik der Stoßvorgänge.Max Born - 1926 - Zeitschrift für Physik 37 (12):863-867.
    Durch eine Untersuchung der Stoßvorgänge wird die Auffassung entwickelt, daß die Quantenmechanik in der Schrödingerschen Form nicht nur die stationären Zustände, sondern auch die Quantensprünge zu beschreiben gestattet.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Comment on "How to protect the interpretation of the wave function against protective measurements" by Jos Uffink.Shan Gao - 2011
    It is shown that Uffink's attempt to protect the interpretation of the wave function against protective measurements fails due to several errors in his arguments.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Model of Wavefunction Collapse in Discrete Space-Time.Shan Gao - 2006 - International Journal of Theoretical Physics 45 (10):1965-1979.
    We give a new argument supporting a gravitational role in quantum collapse. It is demonstrated that the discreteness of space-time, which results from the proper combination of quantum theory and general relativity, may inevitably result in the dynamical collapse of thewave function. Moreover, the minimum size of discrete space-time yields a plausible collapse criterion consistent with experiments. By assuming that the source to collapse the wave function is the inherent random motion of particles described by the wave function, we further (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a quantum state as (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a view (...)
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • On the reality of space-time geometry and the wavefunction.Jeeva Anandan & Harvey R. Brown - 1995 - Foundations of Physics 25 (2):349--60.
    The action-reaction principle (AR) is examined in three contexts: (1) the inertial-gravitational interaction between a particle and space-time geometry, (2) protective observation of an extended wave function of a single particle, and (3) the causal-stochastic or Bohm interpretation of quantum mechanics. A new criterion of reality is formulated using the AR principle. This criterion implies that the wave function of a single particle is real and justifies in the Bohm interpretation the dual ontology of the particle and its associated wave (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Quantum theory at the crossroads: reconsidering the 1927 Solvay conference.Guido Bacciagaluppi - 2007 - New York: Cambridge University Press. Edited by Antony Valentini.
    The 1927 Solvay conference was perhaps the most important meeting in the history of quantum theory. Contrary to popular belief, the interpretation of quantum theory was not settled at this conference, and no consensus was reached. Instead, a range of sharply conflicting views were presented and extensively discussed, including de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schrödinger's wave mechanics. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Reconstructing reality: Environment-induced decoherence, the measurement problem, and the emergence of definiteness in quantum mechanics.Hanneke Janssen - unknown
    This work is a critique of the program of "environment-induced decoherence" as advocated by Zurek, Zeh and Joos, among others. In particular, the alleged relevance of decoherence for a solution of the "measurement problem" is subjected to a detailed philosophical analysis. In the first chapter, an attempt is made to unravel what exactly this "measurement problem" amounts to for the decoherence theorists. The second chapter reviews the standard decoherence literature. The third chapter starts with a brief discussion of the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • An empirical reply to empiricism: Protective measurement opens the door for quantum realism.Michael Dickson - 1995 - Philosophy of Science 62 (1):122-140.
    Quantum mechanics has sometimes been taken to be an empiricist (vs. realist) theory. I state the empiricist's argument, then outline a recently noticed type of measurement--protective measurement--that affords a good reply for the realist. This paper is a reply to scientific empiricism (about quantum mechanics), but is neither a refutation of that position, nor an argument in favor of scientific realism. Rather, my aim is to place realism and empiricism on an even score in regards to quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Quantum collapse, consciousness and superluminal communication.Shan Gao - 2004 - Foundations Of Physics Letters 17 (2):167-182.
    The relation between quantum collapse, consciousness and superluminal communication is analyzed. As we know, quantum collapse, if exists, can result in the appearance of quantum nonlocality, and requires the existence of a pre- ferred Lorentz frame. This may permit the realization of quantum superluminal communication (QSC), which will no longer result in the usual causal loop in case of the existence of a preferred Lorentz frame. The possibility of the existence of QSC is further analyzed under the assumption that quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • (2 other versions)Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics.Tim Maudlin - 1997 - Philosophical Quarterly 47 (186):118-120.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Quantum Equilibrium and the Origin of Absolute Uncertainty.Detlef Durr, Sheldon Goldstein & Nino Zanghi - 1992 - Journal of Statistical Physics 67:843-907.
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Probability in GRW theory.Roman Frigg & Carl Hoefer - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):371-389.
    GRW Theory postulates a stochastic mechanism assuring that every so often the wave function of a quantum system is `hit', which leaves it in a localised state. How are we to interpret the probabilities built into this mechanism? GRW theory is a firmly realist proposal and it is therefore clear that these probabilities are objective probabilities (i.e. chances). A discussion of the major theories of chance leads us to the conclusion that GRW probabilities can be understood only as either single (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Nonquantum Gravity.Stephen Boughn - 2009 - Foundations of Physics 39 (4):331-351.
    One of the great challenges for 21st century physics is to quantize gravity and generate a theory that will unify gravity with the other three fundamental forces of nature. This paper takes the (heretical) point of view that gravity may be an inherently classical, i.e., nonquantum, phenomenon and investigates the experimental consequences of such a conjecture. At present there is no experimental evidence of the quantum nature of gravity and the likelihood of definitive tests in the future is not at (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gravity, energy conservation, and parameter values in collapse models.Philip Pearle & Euan Squires - 1996 - Foundations of Physics 26 (3):291-305.
    We interpret the probability rule of the CSL collapse theory to mean to mean that the scalar field which causes collapse is the gravitational curvature scalar with two sources, the expectation value of the mass density (smeared over the GRW scale a) and a white noise fluctuating source. We examine two models of the fluctuating source, monopole fluctuations and dipole fluctuations, and show that these correspond to two well-known CSL models. We relate the two GRW parameters of CSL to fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   401 citations  
  • God does play dice with the universe: a startling new picture of the world Einstein could not believe but you can understand.Shan Gao - 2008 - Bury St. Edmunds, Suffolk: Arima.
    Science has made a mighty advance since it originated in ancient Greece more than 2500 years ago. Yet we still live in Plato's cave today; we think everything around us moves continuously, but continuous motion is merely a shadow of real motion. This book will lead you to walk out the cave along a logical and comprehensible road. After passing Zeno's arrow, Newton's inertia, Einstein's light, and Schrodinger's cat, you will reach the real world, where every thing in the universe, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The role of decoherence in quantum mechanics.Guido Bacciagaluppi - 2003 - Stanford Encyclopedia of Philosophy.
    Interference phenomena are a well-known and crucial feature of quantum mechanics, the two-slit experiment providing a standard example. There are situations, however, in which interference effects are (artificially or spontaneously) suppressed. We shall need to make precise what this means, but the theory of decoherence is the study of (spontaneous) interactions between a system and its environment that lead to such suppression of interference. This study includes detailed modelling of system-environment interactions, derivation of equations (‘master equations’) for the (reduced) state (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Naive realism about operators.Martin Daumer, Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1996 - Erkenntnis 45 (2-3):379 - 397.
    A source of much difficulty and confusion in the interpretation of quantum mechanics is a naive realism about operators. By this we refer to various ways of taking too seriously the notion of operator-as-observable, and in particular to the all too casual talk about measuring operators that occurs when the subject is quantum mechanics. Without a specification of what should be meant by measuring a quantum observable, such an expression can have no clear meaning. A definite specification is provided by (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Formalism, ontology and methodology in Bohmian mechanics.Darrin W. Belousek - 2003 - Foundations of Science 8 (2):109-172.
    The relationship between mathematical formalism, physical interpretation and epistemological appraisal in the practice of physical theorizing is considered in the context of Bohmian mechanics. After laying outthe formal mathematical postulates of thetheory and recovering the historical roots ofthe present debate over the meaning of Bohmianmechanics from the early debate over themeaning of Schrödinger's wave mechanics,several contemporary interpretations of Bohmianmechanics in the literature are discussed andcritiqued with respect to the aim of causalexplanation and an alternative interpretationis proposed. Throughout, the over-arching aimis (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • How stands collapse II.Philip Pearle - 2009 - In Wayne C. Myrvold & Joy Christian (eds.), Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Springer. pp. 257--292.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The meaning of protective measurements.Yakir Aharonov, Jeeva Anandan & Lev Vaidman - 1996 - Foundations of Physics 26 (1):117-126.
    Protective measurement, which we have introduced recently, allows one to observe properties of the state of a single quantum system and even the Schrödinger wave itself. These measurements require a protection, sometimes due to an additional procedure and sometimes due to the potential of the system itself The analysis of the protective measurements is presented and it is argued, contrary to recent claims, that they observe the quantum state and not the protective potential. Some other misunderstandings concerning our proposal are (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • A quantum physical argument for panpsychism.Shan Gao - 2013 - Journal of Consciousness Studies 20 (1-2):59-70.
    It has been widely thought that consciousness has no causal efficacy in the physical world. However, this may be not the case. In this paper, we show that a conscious being can distinguish definite perceptions and their quantum superpositions, while a physical measuring system without consciousness cannot distinguish such nonorthogonal quantum states. The possible existence of this distinct quantum physical effect of consciousness may have interesting implications for the science of consciousness. In particular, it suggests that consciousness is not emergent (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Quantum Mechanics of Minds and Worlds.Jeffrey Alan Barrett - 1999 - Oxford, GB: Oxford University Press.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Life in configuration space.Peter J. Lewis - 2004 - British Journal for the Philosophy of Science 55 (4):713-729.
    This paper investigates the tenability of wavefunction realism, according to which the quantum mechanical wavefunction is not just a convenient predictive tool, but is a real entity figuring in physical explanations of our measurement results. An apparent difficulty with this position is that the wavefunction exists in a many-dimensional configuration space, whereas the world appears to us to be three-dimensional. I consider the arguments that have been given for and against the tenability of wavefunction realism, and note that both the (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Quantum dynamical reduction and reality: Replacing probability densities with densities in real space. [REVIEW]Giancarlo Ghirardi - 1996 - Erkenntnis 45 (2-3):349 - 365.
    Consideration is given to recent attempts to solve the objectification problem of quantum mechanics by considering nonlinear and stochastic modifications of Schrödinger's evolution equation. Such theories agree with all predictions of standard quantum mechanics concerning microsystems but forbid the occurrence of superpositions of macroscopically different states. It is shown that the appropriate interpretation for such theories is obtained by replacing the probability densities of standard quantum mechanics with mass densities in real space. Criteria allowing a precise characterization of the idea (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Describing the macroscopic world: Closing the circle within the dynamical reduction program. [REVIEW]G. C. Ghirardi, R. Grassi & F. Benatti - 1995 - Foundations of Physics 25 (1):5-38.
    With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe systems within a genuine Hilbert space framework, the peculiar features of the spontaneous reduction models limit drastically the states which are dynamically stable. (...)
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • Wavefunction Collapse and Conservation Laws.Philip Pearle - 2000 - Foundations of Physics 30 (8):1145-1160.
    It is emphasized that the collapse postulate of standard quantum theory can violate conservation of energy-momentum and there is no indication from where the energy-momentum comes or to where it goes. Likewise, in the Continuous Spontaneous Localization (CSL) dynamical collapse model, particles gain energy on average. In CSL, the usual Schrödinger dynamics is altered so that a randomly fluctuating classical field interacts with quantized particles to cause wavefunction collapse. In this paper it is shown how to define energy for the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bohm particles and their detection in the light of neutron interferometry.H. R. Brown, C. Dewdney & G. Horton - 1995 - Foundations of Physics 25 (2):329-347.
    Properties sometimes attributed to the “particle” aspect of a neutron, e.g., mass and magnetic moment, cannot straightforwardly be regarded in the Bohm interpretation of quantum mechanics as localized at the hypothetical position of the particle. This is shown by examining a series of effects in neutron interferometry. A related thought-experiment also provides a variation of a recent demonstration that which-way detectors can appear to behave anomolously in the Bohm theory.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • In Defense of the Existence of States of Motion.Michael Tooley - 1988 - Philosophical Topics 16 (1):225-254.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • The Undivided Universe: An Ontological Interpretation of Quantum Theory.D. Bohm, B. J. Hiley & J. S. Bell - 1993 - Synthese 107 (1):145-165.
    Download  
     
    Export citation  
     
    Bookmark   243 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   135 citations