Switch to: Citations

Add references

You must login to add references.
  1. A survey of abstract algebraic logic.J. M. Font, R. Jansana & D. Pigozzi - 2003 - Studia Logica 74 (1-2):13 - 97.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
    W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • (3 other versions)Categorical abstract algebraic logic: Equivalent institutions.George Voutsadakis - 2003 - Studia Logica 74 (1-2):275 - 311.
    A category theoretic generalization of the theory of algebraizable deductive systems of Blok and Pigozzi is developed. The theory of institutions of Goguen and Burstall is used to provide the underlying framework which replaces and generalizes the universal algebraic framework based on the notion of a deductive system. The notion of a term -institution is introduced first. Then the notions of quasi-equivalence, strong quasi-equivalence and deductive equivalence are defined for -institutions. Necessary and sufficient conditions are given for the quasi-equivalence and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (3 other versions)Categorical Abstract Algebraic Logic: Equivalential π-Institutions.George Voutsadakis - 2008 - Australasian Journal of Logic 6:1-24.
    The theory of equivalential deductive systems, as introduced by Prucnal and Wroński and further developed by Czelakowski, is abstracted to cover the case of logical systems formalized as π-Institutions. More precisely, the notion of an N-equivalence system for a given π-Institutions is introduced. A characterization theorem for N-equivalence systems, previously proven for N-parameterized equivalence systems, is revisited and a “transfer theorem” for N-equivalence systems is proven. For a π-Institutions I having an N-equivalence system, the maximum such system is singled out (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Categorical abstract algebraic logic metalogical properties.George Voutsadakis - 2003 - Studia Logica 74 (3):369 - 398.
    Metalogical properties that have traditionally been studied in the deductive system context (see, e.g., [21]) and transferred later to the institution context [33], are here formulated in the -institution context. Preservation under deductive equivalence of -institutions is investigated. If a property is known to hold in all algebraic -institutions and is preserved under deductive equivalence, then it follows that it holds in all algebraizable -institutions in the sense of [36].
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categorical Abstract Algebraic Logic: Prealgebraicity and Protoalgebraicity.George Voutsadakis - 2007 - Studia Logica 85 (2):215-249.
    Two classes of π are studied whose properties are similar to those of the protoalgebraic deductive systems of Blok and Pigozzi. The first is the class of N-protoalgebraic π-institutions and the second is the wider class of N-prealgebraic π-institutions. Several characterizations are provided. For instance, N-prealgebraic π-institutions are exactly those π-institutions that satisfy monotonicity of the N-Leibniz operator on theory systems and N-protoalgebraic π-institutions those that satisfy monotonicity of the N-Leibniz operator on theory families. Analogs of the correspondence property of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Equivalential and algebraizable logics.Burghard Herrmann - 1996 - Studia Logica 57 (2-3):419 - 436.
    The notion of an algebraizable logic in the sense of Blok and Pigozzi [3] is generalized to that of a possibly infinitely algebraizable, for short, p.i.-algebraizable logic by admitting infinite sets of equivalence formulas and defining equations. An example of the new class is given. Many ideas of this paper have been present in [3] and [4]. By a consequent matrix semantics approach the theory of algebraizable and p.i.-algebraizable logics is developed in a different way. It is related to the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Characterizing equivalential and algebraizable logics by the Leibniz operator.Burghard Herrmann - 1997 - Studia Logica 58 (2):305-323.
    In [14] we used the term finitely algebraizable for algebraizable logics in the sense of Blok and Pigozzi [2] and we introduced possibly infinitely algebraizable, for short, p.i.-algebraizable logics. In the present paper, we characterize the hierarchy of protoalgebraic, equivalential, finitely equivalential, p.i.-algebraizable, and finitely algebraizable logics by properties of the Leibniz operator. A Beth-style definability result yields that finitely equivalential and finitely algebraizable as well as equivalential and p.i.-algebraizable logics can be distinguished by injectivity of the Leibniz operator. Thus, (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Categorical Abstract Algebraic Logic: Models of π-Institutions.George Voutsadakis - 2005 - Notre Dame Journal of Formal Logic 46 (4):439-460.
    An important part of the theory of algebraizable sentential logics consists of studying the algebraic semantics of these logics. As developed by Czelakowski, Blok, and Pigozzi and Font and Jansana, among others, it includes studying the properties of logical matrices serving as models of deductive systems and the properties of abstract logics serving as models of sentential logics. The present paper contributes to the development of the categorical theory by abstracting some of these model theoretic aspects and results from the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (2 other versions)Foreword. [REVIEW]J. Font, R. Jansana & D. Pigozzi - 2003 - Studia Logica 74 (1-2):3-12.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Weakly algebraizable logics.Janusz Czelakowski & Ramon Jansana - 2000 - Journal of Symbolic Logic 65 (2):641-668.
    In the paper we study the class of weakly algebraizable logics, characterized by the monotonicity and injectivity of the Leibniz operator on the theories of the logic. This class forms a new level in the non-linear hierarchy of protoalgebraic logics.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (3 other versions)Equivalential logics.Janusz Czelakowski - 1981 - Studia Logica 40 (3):227-236.
    The class of equivalential logics comprises all implicative logics in the sense of Rasiowa [9], Suszko's logic SCI and many others. Roughly speaking, a logic is equivalential iff the greatest strict congruences in its matrices are determined by polynomials. The present paper is the first part of the survey in which systematic investigations into this class of logics are undertaken. Using results given in [3] and general theorems from the theory of quasi-varieties of models [5] we give a characterization of (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Filter distributive logics.Janusz Czelakowski - 1984 - Studia Logica 43 (4):353 - 377.
    The present paper is thought as a formal study of distributive closure systems which arise in the domain of sentential logics. Special stress is laid on the notion of a C-filter, playing the role analogous to that of a congruence in universal algebra. A sentential logic C is called filter distributive if the lattice of C-filters in every algebra similar to the language of C is distributive. Theorem IV.2 in Section IV gives a method of axiomatization of those filter distributive (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (3 other versions)Equivalential logics (II).Janusz Czelakowski - 1981 - Studia Logica 40 (4):355 - 372.
    In the first section logics with an algebraic semantics are investigated. Section 2 is devoted to subdirect products of matrices. There, among others we give the matrix counterpart of a theorem of Jónsson from universal algebra. Some positive results concerning logics with, finite degrees of maximality are presented in Section 3.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • A deduction theorem schema for deductive systems of propositional logics.Janusz Czelakowski & Wies?aw Dziobiak - 1991 - Studia Logica 50 (3-4):385 - 390.
    We propose a new schema for the deduction theorem and prove that the deductive system S of a prepositional logic L fulfills the proposed schema if and only if there exists a finite set A(p, q) of propositional formulae involving only prepositional letters p and q such that A(p, p) L and p, A(p, q) s q.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Protoalgebraic logics.W. J. Blok & Don Pigozzi - 1986 - Studia Logica 45 (4):337 - 369.
    There exist important deductive systems, such as the non-normal modal logics, that are not proper subjects of classical algebraic logic in the sense that their metatheory cannot be reduced to the equational metatheory of any particular class of algebras. Nevertheless, most of these systems are amenable to the methods of universal algebra when applied to the matrix models of the system. In the present paper we consider a wide class of deductive systems of this kind called protoalgebraic logics. These include (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)Categorical Abstract Algebraic Logic: Full Models, Frege Systems and Metalogical Properties.George Voutsadakis - 2006 - Reports on Mathematical Logic.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An algebraic characterization of the notion of structural completeness.Tadeusz Prucnal & Andrzej Wronski - 1974 - Bulletin of the Section of Logic 3 (1):30-33.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • al-Akhlāq: uṣūluhā al-dīnīyah wa-judhūruhā al-falsafīyah.Muḥammad ʻAlī Bārr - 2010 - Jiddah: Kursī Akhlāqīyāt al-Ṭibb.
    Download  
     
    Export citation  
     
    Bookmark   26 citations