- Dermatologist-level classification of skin cancer with deep neural networks.Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun - 2017 - Nature 542 (7639):115-118.details
|
|
Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.Cynthia Rudin - 2019 - Nature Machine Intelligence 1.details
|
|
Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.A. Barredo Arrieta, N. Díaz-Rodríguez, J. Ser, A. Bennetot, S. Tabik & A. Barbado - 2020 - Information Fusion 58.details
|
|
(1 other version)Philosophy of Medicine.Alex Broadbent & Jonathan Fuller - 2020 - Philosophy of Medicine 1 (1).details
|
|
Explainable machine learning practices: opening another black box for reliable medical AI.Emanuele Ratti & Mark Graves - 2022 - AI and Ethics:1-14.details
|
|
Algorithmic and human decision making: for a double standard of transparency.Mario Günther & Atoosa Kasirzadeh - 2022 - AI and Society 37 (1):375-381.details
|
|
What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.details
|
|
Transparency in Complex Computational Systems.Kathleen A. Creel - 2020 - Philosophy of Science 87 (4):568-589.details
|
|
Artificial Intelligence and Patient-Centered Decision-Making.Jens Christian Bjerring & Jacob Busch - 2020 - Philosophy and Technology 34 (2):349-371.details
|
|
Transparency in Algorithmic and Human Decision-Making: Is There a Double Standard?John Zerilli, Alistair Knott, James Maclaurin & Colin Gavaghan - 2018 - Philosophy and Technology 32 (4):661-683.details
|
|
Clinical applications of machine learning algorithms: beyond the black box.David S. Watson, Jenny Krutzinna, Ian N. Bruce, Christopher E. M. Griffiths, Iain B. McInnes, Michael R. Barnes & Luciano Floridi - 2019 - British Medical Journal 364:I886.details
|
|
Deep learning: A philosophical introduction.Cameron Buckner - 2019 - Philosophy Compass 14 (10):e12625.details
|
|
Against Interpretability: a Critical Examination of the Interpretability Problem in Machine Learning.Maya Krishnan - 2020 - Philosophy and Technology 33 (3):487-502.details
|
|
Artificial Intelligence and Black‐Box Medical Decisions: Accuracy versus Explainability.Alex John London - 2019 - Hastings Center Report 49 (1):15-21.details
|
|
Computer knows best? The need for value-flexibility in medical AI.Rosalind J. McDougall - 2019 - Journal of Medical Ethics 45 (3):156-160.details
|
|
On perceptual expertise.Dustin Stokes - 2020 - Mind and Language 36 (2):241-263.details
|
|
Understanding and the facts.Catherine Elgin - 2007 - Philosophical Studies 132 (1):33 - 42.details
|
|
(1 other version)Reliabilist Epistemology.Alvin Goldman & Bob Beddor - 2021 - Stanford Encyclopedia of Philosophy.details
|
|
Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.Juan Manuel Durán & Karin Rolanda Jongsma - 2021 - Journal of Medical Ethics 47 (5):medethics - 2020-106820.details
|
|
How the machine ‘thinks’: Understanding opacity in machine learning algorithms.Jenna Burrell - 2016 - Big Data and Society 3 (1):205395171562251.details
|
|
Solving the Black Box Problem: A Normative Framework for Explainable Artificial Intelligence.Carlos Zednik - 2019 - Philosophy and Technology 34 (2):265-288.details
|
|
Why Most Published Research Findings Are False.John P. A. Ioannidis - 2005 - PLoS Med 2 (8):e124.details
|
|
Scientific Exploration and Explainable Artificial Intelligence.Carlos Zednik & Hannes Boelsen - 2022 - Minds and Machines 32 (1):219-239.details
|
|
How to generalize efficacy results of randomized trials: recommendations based on a systematic review of possible approaches.Piet N. Post, Hans Beer & Gordon H. Guyatt - 2013 - Journal of Evaluation in Clinical Practice 19 (4):638-643.details
|
|
Conceptual challenges for interpretable machine learning.David S. Watson - 2022 - Synthese 200 (2):1-33.details
|
|
Explanatory pragmatism: a context-sensitive framework for explainable medical AI.Diana Robinson & Rune Nyrup - 2022 - Ethics and Information Technology 24 (1).details
|
|
Model Evaluation: An Adequacy-for-Purpose View.Wendy S. Parker - 2020 - Philosophy of Science 87 (3):457-477.details
|
|
Artificial intelligence in medicine and the disclosure of risks.Maximilian Kiener - 2021 - AI and Society 36 (3):705-713.details
|
|
Values and inductive risk in machine learning modelling: the case of binary classification models.Koray Karaca - 2021 - European Journal for Philosophy of Science 11 (4):1-27.details
|
|
How competitors become collaborators—Bridging the gap(s) between machine learning algorithms and clinicians.Thomas Grote & Philipp Berens - 2021 - Bioethics 36 (2):134-142.details
|
|
The myth and fallacy of simple extrapolation in medicine.Jonathan Fuller - 2019 - Synthese 198 (4):2919-2939.details
|
|
Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour.Cameron Buckner - 2023 - British Journal for the Philosophy of Science 74 (3):681-712.details
|
|
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek & Klaus-Robert Müller - 2019 - Nature Communications 10 (1):1--8.details
|
|
Evidential Pluralism and Explainable AI.Jon Williamson - unknowndetails
|
|
Randomized Controlled Trials in Medical AI.Konstantin Genin & Thomas Grote - 2021 - Philosophy of Medicine 2 (1).details
|
|