Switch to: Citations

Add references

You must login to add references.
  1. Plural Logic.Alex Oliver & Timothy Smiley - 2013 - Oxford, England: Oxford University Press UK. Edited by T. J. Smiley.
    Alex Oliver and Timothy Smiley provide a new account of plural logic. They argue that there is such a thing as genuinely plural denotation in logic, and expound a framework of ideas that includes the distinction between distributive and collective predicates, the theory of plural descriptions, multivalued functions, and lists.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Sets, Logic and Categories.Peter J. Cameron - 1999 - Springer Verlag.
    Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Elusiveness of Sets.Max Black - 1971 - Review of Metaphysics 24 (4):614-636.
    NOWADAYS, even schoolchildren babble about "null sets" and "singletons" and "one-one correspondences," as if they knew what they were talking about. But if they understand even less than their teachers, which seems likely, they must be using the technical jargon with only an illusion of understanding. Beginners are taught that a set having three members is a single thing, wholly constituted by its members but distinct from them. After this, the theological doctrine of the Trinity as "three in one" should (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Necessary Beings: An Essay on Ontology, Modality, and the Relations Between Them.Bob Hale - 2013 - Oxford, England: Oxford University Press.
    Bob Hale presents a broadly Fregean approach to metaphysics, according to which ontology and modality are mutually dependent upon one another. He argues that facts about what kinds of things exist depend on facts about what is possible. Modal facts are fundamental, and have their basis in the essences of things--not in meanings or concepts.
    Download  
     
    Export citation  
     
    Bookmark   101 citations  
  • Sets and Plural Comprehension.Keith Hossack - 2014 - Journal of Philosophical Logic 43 (2-3):517-539.
    The state of affairs of some things falling under a predicate is supposedly a single entity that collects these things as its constituents. But whether we think of a state of affairs as a fact, a proposition or a possibility, problems will arise if we adopt a plural logic. For plural logic says that any plurality include themselves, so whenever there are some things, the state of affairs of their plural self-inclusion should be a single thing that collects them all. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • How to be a minimalist about sets.Luca Incurvati - 2012 - Philosophical Studies 159 (1):69-87.
    According to the iterative conception of set, sets can be arranged in a cumulative hierarchy divided into levels. But why should we think this to be the case? The standard answer in the philosophical literature is that sets are somehow constituted by their members. In the first part of the paper, I present a number of problems for this answer, paying special attention to the view that sets are metaphysically dependent upon their members. In the second part of the paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Non-Well-Founded Sets.Peter Aczel - 1988 - Palo Alto, CA, USA: Csli Lecture Notes.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Set theory and the continuum hypothesis.Paul J. Cohen - 1966 - New York,: W. A. Benjamin.
    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Parts of Classes.David K. Lewis - 1990 - Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   615 citations  
  • Set Theory and its Philosophy: A Critical Introduction.Michael D. Potter - 2004 - Oxford, England: Oxford University Press.
    Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Pluralities and Sets.Øystein Linnebo - 2010 - Journal of Philosophy 107 (3):144-164.
    Say that some things form a set just in case there is a set whose members are precisely the things in question. For instance, all the inhabitants of New York form a set. So do all the stars in the universe. And so do all the natural numbers. Under what conditions do some things form a set?
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • (1 other version)On what grounds what.Jonathan Schaffer - 2009 - In Ryan Wasserman, David Manley & David Chalmers (eds.), Metametaphysics: New Essays on the Foundations of Ontology. Oxford, England: Oxford University Press. pp. 347-383.
    On the now dominant Quinean view, metaphysics is about what there is. Metaphysics so conceived is concerned with such questions as whether properties exist, whether meanings exist, and whether numbers exist. I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what. Metaphysics so revived does not bother asking whether properties, meanings, and numbers exist (of course they do!) The question is whether or not they are fundamental.
    Download  
     
    Export citation  
     
    Bookmark   769 citations  
  • The logic of paradox.Graham Priest - 1979 - Journal of Philosophical Logic 8 (1):219 - 241.
    Download  
     
    Export citation  
     
    Bookmark   474 citations  
  • What are sets and what are they for?Alex Oliver & Timothy Smiley - 2006 - Philosophical Perspectives 20 (1):123–155.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.
    Mathematical realism is the doctrine that mathematical objects really exist, that mathematical statements are either determinately true or determinately false, and that the accepted mathematical axioms are predominantly true. A realist understanding of set theory has it that when the sentences of the language of set theory are understood in their standard meaning, each sentence has a determinate truth value, so that there is a fact of the matter whether the cardinality of the continuum is א2 or whether there are (...)
    Download  
     
    Export citation  
     
    Bookmark   101 citations  
  • Outline of a theory of truth.Saul Kripke - 1975 - Journal of Philosophy 72 (19):690-716.
    A formal theory of truth, alternative to tarski's 'orthodox' theory, based on truth-value gaps, is presented. the theory is proposed as a fairly plausible model for natural language and as one which allows rigorous definitions to be given for various intuitive concepts, such as those of 'grounded' and 'paradoxical' sentences.
    Download  
     
    Export citation  
     
    Bookmark   893 citations  
  • (1 other version)Realism and Dialetheism.Fred Kroon - 2004 - In Graham Priest, Jc Beall & Bradley P. Armour-Garb (eds.), The law of non-contradiction : new philosophical essays. New York: Oxford University Press. pp. 245–263.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Modal Logic as Metaphysics.Timothy Williamson - 2013 - Oxford, England: Oxford University Press.
    Timothy Williamson gives an original and provocative treatment of deep metaphysical questions about existence, contingency, and change, using the latest resources of quantified modal logic. Contrary to the widespread assumption that logic and metaphysics are disjoint, he argues that modal logic provides a structural core for metaphysics.
    Download  
     
    Export citation  
     
    Bookmark   429 citations  
  • Hierarchies Ontological and Ideological.Øystein Linnebo & Agustín Rayo - 2012 - Mind 121 (482):269 - 308.
    Gödel claimed that Zermelo-Fraenkel set theory is 'what becomes of the theory of types if certain superfluous restrictions are removed'. The aim of this paper is to develop a clearer understanding of Gödel's remark, and of the surrounding philosophical terrain. In connection with this, we discuss some technical issues concerning infinitary type theories and the programme of developing the semantics for higher-order languages in other higher-order languages.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Paraconsistent Logic: Essays on the Inconsistent.Graham Priest, Richard Routley & Jean Norman (eds.) - 1989 - Philosophia Verlag.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • The law of non-contradiction : new philosophical essays.Graham Priest, Jc Beall & Bradley P. Armour-Garb (eds.) - 2004 - New York: Oxford University Press.
    The Law of Non-Contradiction - that no contradiction can be true - has been a seemingly unassailable dogma since the work of Aristotle, in Book G of the Metaphysics. It is an assumption challenged from a variety of angles in this collection of original papers. Twenty-three of the world's leading experts investigate the 'law', considering arguments for and against it and discussing methodological issues that arise whenever we question the legitimacy of logical principles. The result is a balanced inquiry into (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Toward a Theory of Second-Order Consequence.Augustín Rayo & Gabriel Uzquiano - 1999 - Notre Dame Journal of Formal Logic 40 (3):315-325.
    There is little doubt that a second-order axiomatization of Zermelo-Fraenkel set theory plus the axiom of choice (ZFC) is desirable. One advantage of such an axiomatization is that it permits us to express the principles underlying the first-order schemata of separation and replacement. Another is its almost-categoricity: M is a model of second-order ZFC if and only if it is isomorphic to a model of the form Vκ, ∈ ∩ (Vκ × Vκ) , for κ a strongly inaccessible ordinal.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • (1 other version)The iterative conception of set.George Boolos - 1971 - Journal of Philosophy 68 (8):215-231.
    Download  
     
    Export citation  
     
    Bookmark   202 citations  
  • Sets.Erik Stenius - 1974 - Synthese 27 (1-2):161 - 188.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Naïve set theory is innocent!A. Weir - 1998 - Mind 107 (428):763-798.
    Naive set theory, as found in Frege and Russell, is almost universally believed to have been shown to be false by the set-theoretic paradoxes. The standard response has been to rank sets into one or other hierarchy. However it is extremely difficult to characterise the nature of any such hierarchy without falling into antinomies as severe as the set-theoretic paradoxes themselves. Various attempts to surmount this problem are examined and criticised. It is argued that the rejection of naive set theory (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Plural quantification and classes.Gabriel Uzquiano - 2003 - Philosophia Mathematica 11 (1):67-81.
    When viewed as the most comprehensive theory of collections, set theory leaves no room for classes. But the vocabulary of classes, it is argued, provides us with compact and, sometimes, irreplaceable formulations of largecardinal hypotheses that are prominent in much very important and very interesting work in set theory. Fortunately, George Boolos has persuasively argued that plural quantification over the universe of all sets need not commit us to classes. This paper suggests that we retain the vocabulary of classes, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (2 other versions)Modal Logic.Marcus Kracht - 2002 - Bulletin of Symbolic Logic 8 (2):299-301.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • On the Innocence and Determinacy of Plural Quantification.Salvatore Florio & Øystein Linnebo - 2016 - Noûs 50 (3):565–583.
    Plural logic is widely assumed to have two important virtues: ontological innocence and determinacy. It is claimed to be innocent in the sense that it incurs no ontological commitments beyond those already incurred by the first-order quantifiers. It is claimed to be determinate in the sense that it is immune to the threat of non-standard interpretations that confronts higher-order logics on their more traditional, set-based semantics. We challenge both claims. Our challenge is based on a Henkin-style semantics for plural logic (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Circularity and Paradox.Stephen Yablo - 2008 - In Thomas Bolander (ed.), Self-reference. Center for the Study of Language and Inf. pp. 139--157.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Quantification, naturalness and ontology.Ross P. Cameron - 2010
    Quine said that the ontological question can be asked in three words, ‘What is there?’, and answered in one, ‘everything’. He was wrong. We need an extra word to ask the ontological question: it is ‘What is there, really?’; and it cannot be answered truthfully with ‘everything’ because there are some things that exist but which don’t really exist (and maybe even some things that really exist but which don’t exist).
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Modalising Plurals.Simon Thomas Hewitt - 2012 - Journal of Philosophical Logic 41 (5):853-875.
    There has been very little discussion of the appropriate principles to govern a modal logic of plurals. What debate there has been has accepted a principle I call (Necinc); informally if this is one of those then, necessarily: this is one of those. On this basis Williamson has criticised the Boolosian plural interpretation of monadic second-order logic. I argue against (Necinc), noting that it isn't a theorem of any logic resulting from adding modal axioms to the plural logic PFO+, and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Logic of Finite Order.Simon Hewitt - 2012 - Notre Dame Journal of Formal Logic 53 (3):297-318.
    This paper develops a formal system, consisting of a language and semantics, called serial logic ( SL ). In rough outline, SL permits quantification over, and reference to, some finite number of things in an order , in an ordinary everyday sense of the word “order,” and superplural quantification over things thus ordered. Before we discuss SL itself, some mention should be made of an issue in philosophical logic which provides the background to the development of SL , and with (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Sets, classes, and categories.F. A. Muller - 2001 - British Journal for the Philosophy of Science 52 (3):539-573.
    This paper, accessible for a general philosophical audience having only some fleeting acquaintance with set-theory and category-theory, concerns the philosophy of mathematics, specifically the bearing of category-theory on the foundations of mathematics. We argue for six claims. (I) A founding theory for category-theory based on the primitive concept of a set or a class is worthwile to pursue. (II) The extant set-theoretical founding theories for category-theory are conceptually flawed. (III) The conceptual distinction between a set and a class can be (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Kreisel, the continuum hypothesis and second order set theory.Thomas Weston - 1976 - Journal of Philosophical Logic 5 (2):281 - 298.
    The major point of contention among the philosophers and mathematicians who have written about the independence results for the continuum hypothesis (CH) and related questions in set theory has been the question of whether these results give reason to doubt that the independent statements have definite truth values. This paper concerns the views of G. Kreisel, who gives arguments based on second order logic that the CH does have a truth value. The view defended here is that although Kreisel's conclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Beyond Plurals.Agust\’in Rayo - 2006 - In Agustín Rayo & Gabriel Uzquiano (eds.), Absolute generality. New York: Oxford University Press. pp. 220--54.
    I have two main objectives. The first is to get a better understanding of what is at issue between friends and foes of higher-order quantification, and of what it would mean to extend a Boolos-style treatment of second-order quantification to third- and higherorder quantification. The second objective is to argue that in the presence of absolutely general quantification, proper semantic theorizing is essentially unstable: it is impossible to provide a suitably general semantics for a given language in a language of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Two notes on the foundations of set‐theory.G. Kreisel - 1969 - Dialectica 23 (2):93-114.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Relevance: a fallacy?John P. Burgess - 1981 - Notre Dame Journal of Formal Logic 22 (2):97-104.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Cantorian Set Theory and Limitation of Size.Michael Hallett - 1990 - Studia Logica 49 (2):283-284.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • The non-triviality of dialectical set theory.Ross T. Brady - 1989 - In Graham Priest, Richard Routley & Jean Norman (eds.), Paraconsistent Logic: Essays on the Inconsistent. Philosophia Verlag. pp. 437--470.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Sets, Logic and Categories.Peter J. Cameron - 2000 - Studia Logica 66 (3):445-446.
    Download  
     
    Export citation  
     
    Bookmark   4 citations