- Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.details
|
|
Indefinite Extensibility—Dialetheic Style.Graham Priest - 2013 - Studia Logica 101 (6):1263-1275.details
|
|
Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.details
|
|
A New–old Characterisation of Logical Knowledge.Ivor Grattan-Guinness - 2012 - History and Philosophy of Logic 33 (3):245 - 290.details
|
|
Throwing Darts, Time, and the Infinite.Jeremy Gwiazda - 2013 - Erkenntnis 78 (5):971-975.details
|
|
Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.details
|
|
On the number of gods.Eric Steinhart - 2012 - International Journal for Philosophy of Religion 72 (2):75-83.details
|
|
How to be a minimalist about sets.Luca Incurvati - 2012 - Philosophical Studies 159 (1):69-87.details
|
|
A Mathematical Model of Divine Infinity.Eric Steinhart - 2009 - Theology and Science 7 (3):261-274.details
|
|
Zermelo: Boundary numbers and domains of sets continued.Heinz-Dieter Ebbinghaus - 2006 - History and Philosophy of Logic 27 (4):285-306.details
|
|
An axiom schema of comprehension of zermelo–fraenkel–skolem set theory.Johannes Heidema - 1990 - History and Philosophy of Logic 11 (1):59-65.details
|
|
A Defense of Second-Order Logic.Otávio Bueno - 2010 - Axiomathes 20 (2-3):365-383.details
|
|
Transfinite numbers in paraconsistent set theory.Zach Weber - 2010 - Review of Symbolic Logic 3 (1):71-92.details
|
|
Boolos on the justification of set theory.Alexander Paseau - 2007 - Philosophia Mathematica 15 (1):30-53.details
|
|
(1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.details
|
|
Modalité et changement: δύναμις et cinétique aristotélicienne.Marion Florian - 2023 - Dissertation, Université Catholique de Louvaindetails
|
|
Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.details
|
|
The Classic Inherence Theory of Attributes: Its Theses and Their Errors.D. W. Mertz - 2023 - Acta Analytica 38 (3):495-516.details
|
|
A Reassessment of Cantorian Abstraction based on the $$\varepsilon $$ ε -operator.Nicola Bonatti - 2022 - Synthese 200 (5):1-26.details
|
|
A metaphysical foundation for mathematical philosophy.Wójtowicz Krzysztof & Skowron Bartłomiej - 2022 - Synthese 200 (4):1-28.details
|
|
Cantor's Abstractionism and Hume's Principle.Claudio Ternullo & Luca Zanetti - 2021 - History and Philosophy of Logic 43 (3):284-300.details
|
|
Bolzano’s Mathematical Infinite.Anna Bellomo & Guillaume Massas - 2021 - Review of Symbolic Logic:1-55.details
|
|
All Worlds in One: Reassessing the Forest-Armstrong Argument.Phillip Bricker - 2020 - In Modal Matters: Essays in Metaphysics. Oxford, England: Oxford University Press. pp. 278-314.details
|
|
Proof vs Provability: On Brouwer’s Time Problem.Palle Yourgrau - 2020 - History and Philosophy of Logic 41 (2):140-153.details
|
|
Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.details
|
|
Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.details
|
|
(2 other versions)The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.details
|
|
(1 other version)Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.details
|
|
Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.details
|
|
Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.details
|
|
Measuring the Size of Infinite Collections of Natural Numbers: Was Cantor’s Theory of Infinite Number Inevitable?Paolo Mancosu - 2009 - Review of Symbolic Logic 2 (4):612-646.details
|
|
Empiricism, scientific change and mathematical change.Otávio Bueno - 2000 - Studies in History and Philosophy of Science Part A 31 (2):269-296.details
|
|
Predicativity and Structuralism in Dedekind’s Construction of the Reals.Audrey Yap - 2009 - Erkenntnis 71 (2):157-173.details
|
|
Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.details
|
|
Transfinite Cardinals in Paraconsistent Set Theory.Zach Weber - 2012 - Review of Symbolic Logic 5 (2):269-293.details
|
|
Conceptual Metaphors and Mathematical Practice: On Cognitive Studies of Historical Developments in Mathematics.Dirk Schlimm - 2013 - Topics in Cognitive Science 5 (2):283-298.details
|
|
The diagonal argument—A study of cases.Zvonimir Šikić - 1992 - International Studies in the Philosophy of Science 6 (3):191-203.details
|
|
Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor.Carlo Proietti - 2008 - History and Philosophy of Logic 29 (4):343-359.details
|
|
A critical appraisal of second-order logic.Ignacio Jané - 1993 - History and Philosophy of Logic 14 (1):67-86.details
|
|
The Motives Behind Cantor’s Set Theory: Physical, biological and philosophical questions.José Ferreirós - 2004 - Science in Context 17 (1/2):1–35.details
|
|
To Continue With Continuity.Martin Cooke - 2005 - Metaphysica 6 (2):91-109.details
|
|
On plural reference and elementary set theory.Helen Morris Cartwright - 1993 - Synthese 96 (2):201 - 254.details
|
|
Mathematics as a quasi-empirical science.Gianluigi Oliveri - 2004 - Foundations of Science 11 (1-2):41-79.details
|
|
E pluribus unum: Plural logic and set theory.John P. Burgess - 2004 - Philosophia Mathematica 12 (3):193-221.details
|
|
Conceptions and paradoxes of sets.G. Aldo Antonelli - 1999 - Philosophia Mathematica 7 (2):136-163.details
|
|
Bolzano’s Infinite Quantities.Kateřina Trlifajová - 2018 - Foundations of Science 23 (4):681-704.details
|
|
The influence of Spinoza’s concept of infinity on Cantor’s set theory.Paolo Bussotti & Christian Tapp - 2009 - Studies in History and Philosophy of Science Part A 40 (1):25-35.details
|
|
(1 other version)Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.details
|
|
Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.details
|
|
The role of the absolute infinite in Cantor's conception of set.Ignacio Jané - 1995 - Erkenntnis 42 (3):375 - 402.details
|
|