Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Classical Recursion Theory.Peter G. Hinman - 2001 - Bulletin of Symbolic Logic 7 (1):71-73.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Computability Theory.S. Barry Cooper - 2003 - Chapman & Hall.
    Computability theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications. Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences. Written by a leading researcher, Computability Theory provides a concise, comprehensive, and authoritative introduction to contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Theory of recursive functions and effective computability.Hartley Rogers - 1987 - Cambridge: MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
    Download  
     
    Export citation  
     
    Bookmark   602 citations  
  • (2 other versions)Creative sets.John Myhill - 1955 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 1 (2):97-108.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)Enumeration Reducibility Using Bounded Information: Counting Minimal Covers.S. Barry Cooper - 1987 - Mathematical Logic Quarterly 33 (6):537-560.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (2 other versions)Creative sets.John Myhill - 1955 - Mathematical Logic Quarterly 1 (2):97-108.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Degrees of Unsolvability.Gerald E. Sacks - 1966 - Princeton University Press.
    A classic treatment of degrees of unsolvability from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • The structure of the s -degrees contained within a single e -degree.Thomas F. Kent - 2009 - Annals of Pure and Applied Logic 160 (1):13-21.
    For any enumeration degree let be the set of s-degrees contained in . We answer an open question of Watson by showing that if is a nontrivial -enumeration degree, then has no least element. We also show that every countable partial order embeds into . Finally, we construct -sets A and B such that B≤eA but for every X≡eB, XsA.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the Turing degrees) into (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Strong Enumeration Reducibilities.Roland Sh Omanadze & Andrea Sorbi - 2006 - Archive for Mathematical Logic 45 (7):869-912.
    We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure $L(\mathfrak D_s)$ of the s-degrees. However, $L(\mathfrak D_s)$ is not distributive. We show that on $\Delta^{0}_{2}$ sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for $L(\mathfrak D_s)$ . In particular $L(\mathfrak D_s)$ is upwards dense. Among the results about reducibilities that are stronger than s-reducibility, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Definability in the enumeration degrees.Theodore A. Slaman & W. Hugh Woodin - 1997 - Archive for Mathematical Logic 36 (4-5):255-267.
    We prove that every countable relation on the enumeration degrees, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}, is uniformly definable from parameters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}. Consequently, the first order theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document} is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the first order (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Enumeration Reducibility Using Bounded Information: Counting Minimal Covers.S. Barry Cooper - 1987 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (6):537-560.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (2 other versions)Creative Sets.John Myhill - 1957 - Journal of Symbolic Logic 22 (1):73-76.
    Download  
     
    Export citation  
     
    Bookmark   2 citations