Switch to: References

Citations of:

Degrees of Unsolvability

Princeton University Press (1966)

Add citations

You must login to add citations.
  1. Finite injury arguments in infinite computation theories.Viggo Stoltenberg-Hansen - 1979 - Annals of Mathematical Logic 16 (1):57-80.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong Minimal Covers for Recursively Enumerable Degrees.S. Barry Cooper - 1996 - Mathematical Logic Quarterly 42 (1):191-196.
    We prove that there exists a nonzero recursively enumerable Turing degree possessing a strong minimal cover.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The n-r.E. Degrees: Undecidability and σ1 substructures.Mingzhong Cai, Richard A. Shore & Theodore A. Slaman - 2012 - Journal of Mathematical Logic 12 (1):1250005-.
    We study the global properties of [Formula: see text], the Turing degrees of the n-r.e. sets. In Theorem 1.5, we show that the first order of [Formula: see text] is not decidable. In Theorem 1.6, we show that for any two n and m with n < m, [Formula: see text] is not a Σ1-substructure of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets.Robert I. Soare - 1982 - Annals of Mathematical Logic 22 (1):69.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Measure and category in effective descriptive set theory.Alexander S. Kechris - 1973 - Annals of Mathematical Logic 5 (4):337.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Arithmetical Reducibilities I.Alan L. Selman - 1971 - Mathematical Logic Quarterly 17 (1):335-350.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • System Functions and Their Decision Problems.M. B. Thuraisingham - 1984 - Mathematical Logic Quarterly 30 (7-8):119-128.
    Download  
     
    Export citation  
     
    Bookmark  
  • Minimal α-degrees.Richard A. Shore - 1972 - Annals of Mathematical Logic 4 (4):393-414.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The recursively enumerable alpha-degrees are dense.Richard A. Shore - 1976 - Annals of Mathematical Logic 9 (1/2):123.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A recursively enumerable degree which will not split over all lesser ones.Alistair H. Lachlan - 1976 - Annals of Mathematical Logic 9 (4):307.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Incomparable prime ideals of recursively enumerable degrees.William C. Calhoun - 1993 - Annals of Pure and Applied Logic 63 (1):39-56.
    Calhoun, W.C., Incomparable prime ideals of recursively enumerable degrees, Annals of Pure and Applied Logic 63 39–56. We show that there is a countably infinite antichain of prime ideals of recursively enumerable degrees. This solves a generalized form of Post's problem.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Degrees of Hyperimmune Sets.Webb Miller & D. A. Martin - 1968 - Mathematical Logic Quarterly 14 (7-12):159-166.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Intuitionistically provable recursive well-orderings.Harvey M. Friedman & Andre Scedrov - 1986 - Annals of Pure and Applied Logic 30 (2):165-171.
    We consider intuitionistic number theory with recursive infinitary rules . Any primitive recursive binary relation for which transfinite induction schema is provable is in fact well founded. Its ordinal is less than ε 0 if the transfinite induction schema is intuitionistically provable in elementary number theory. These results are provable intuitionistically. In fact, it suffices to consider transfinite induction with respect to one particular number-theoretic property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Completely Autoreducible Degrees.Carl G. Jockusch & Michael S. Paterson - 1976 - Mathematical Logic Quarterly 22 (1):571-575.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Random reals and possibly infinite computations Part I: Randomness in ∅'.Verónica Becher & Serge Grigorieff - 2005 - Journal of Symbolic Logic 70 (3):891-913.
    Using possibly infinite computations on universal monotone Turing machines, we prove Martin-Löf randomness in ∅' of the probability that the output be in some set.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The theory of the metarecursively enumerable degrees.Noam Greenberg, Richard A. Shore & Theodore A. Slaman - 2006 - Journal of Mathematical Logic 6 (1):49-68.
    Sacks [23] asks if the metarecursively enumerable degrees are elementarily equivalent to the r.e. degrees. In unpublished work, Slaman and Shore proved that they are not. This paper provides a simpler proof of that result and characterizes the degree of the theory as [Formula: see text] or, equivalently, that of the truth set of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Topological framework for finite injury.Kyriakos Kontostathis - 1992 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38 (1):189-195.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bounded enumeration reducibility and its degree structure.Daniele Marsibilio & Andrea Sorbi - 2012 - Archive for Mathematical Logic 51 (1-2):163-186.
    We study a strong enumeration reducibility, called bounded enumeration reducibility and denoted by ≤be, which is a natural extension of s-reducibility ≤s. We show that ≤s, ≤be, and enumeration reducibility do not coincide on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} –sets, and the structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{\mathcal{D}_{\rm be}}}$$\end{document} of the be-degrees is not elementarily equivalent to the structure of the s-degrees. We show also that the first order theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Degrees of unsolvability complementary between recursively enumerable degrees, Part I.S. B. Cooper - 1972 - Annals of Mathematical Logic 4 (1):31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Topological framework for finite injury.Kyriakos Kontostathis - 1992 - Mathematical Logic Quarterly 38 (1):189-195.
    We formulate an abstract version of the finite injury method in the form of the Baire category theorem. The theorem has the following corollaries: The Friedberg-Muchnik pair of recursively enumerable degrees, the Sacks splitting theorem, the existence of a minimal degree below 0′ and the Shoenfield jump theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The α-finite injury method.G. E. Sacks & S. G. Simpson - 1972 - Annals of Mathematical Logic 4 (4):343-367.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Classes of Recursively Enumerable Sets and Degrees of Unsolvability.Donald A. Martin - 1966 - Mathematical Logic Quarterly 12 (1):295-310.
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • A necessary and sufficient condition for embedding ranked finite partial lattices into the computably enumerable degrees.M. Lerman - 1998 - Annals of Pure and Applied Logic 94 (1-3):143-180.
    We define a class of finite partial lattices which admit a notion of rank compatible with embedding constructions, and present a necessary and sufficient condition for the embeddability of a finite ranked partial lattice into the computably enumerable degrees.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Direct Summands of Recursively Enumerable Vector Spaces.Allen Retzlaff - 1979 - Mathematical Logic Quarterly 25 (19-24):363-372.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some applications of forcing to hierarchy problems in arithmetic.Peter G. Hinman - 1969 - Mathematical Logic Quarterly 15 (20-22):341-352.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A degree-theoretic definition of the ramified analytical hierarchy.Carl G. Jockusch & Stephen G. Simpson - 1976 - Annals of Mathematical Logic 10 (1):1-32.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The weak truth table degrees of recursively enumerable sets.Richard E. Ladner & Leonard P. Sasso - 1975 - Annals of Mathematical Logic 8 (4):429-448.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (1 other version)Arithmetical Sets and Retracing Functions.C. E. M. Yates - 1967 - Mathematical Logic Quarterly 13 (13-14):193-204.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Completely Autoreducible Degrees.Carl G. Jockusch & Michael S. Paterson - 1976 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 22 (1):571-575.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Enumeration reducibility and partial degrees.John Case - 1971 - Annals of Mathematical Logic 2 (4):419-439.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Masstheoretische Ergebnisse für WT‐Grade.Friedrich Hebeisen - 1979 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (3‐6):33-36.
    Download  
     
    Export citation  
     
    Bookmark  
  • Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results for any (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Possible degrees in recursive copies.C. J. Ash & J. F. Knight - 1995 - Annals of Pure and Applied Logic 75 (3):215-221.
    Let be a recursive structure, and let R be a recursive relation on . Harizanov isolated a syntactical condition which is necessary and sufficient for to have recursive copies in which the image of R is r.e. of arbitrary r.e. degree. We had conjectured that a certain extension of Harizanov's syntactical condition would be necessary and sufficient for to have recursive copies in which the image of R is ∑α0 of arbitrary ∑α0 degree, but this is not the case. Here (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the Turing degrees) into (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations