Switch to: Citations

Add references

You must login to add references.
  1. TGF-beta signaling proteins and the Protein Ontology.Arighi Cecilia, Liu Hongfang, Natale Darren, Barker Winona, Drabkin Harold, Blake Judith, Barry Smith & Wu Cathy - 2009 - BMC Bioinformatics 10 (Suppl 5):S3.
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides a framework (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Investigating Subsumption in SNOMED CT: An Exploration into Large Description Logic-Based Biomedical Terminologies.Olivier Bodenreider, Barry Smith, Anand Kumar & Anita Burgun - 2007 - Artificial Intelligence in Medicine 39 (3):183-195.
    Formalisms based on one or other flavor of Description Logic (DL) are sometimes put forward as helping to ensure that terminologies and controlled vocabularies comply with sound ontological principles. The objective of this paper is to study the degree to which one DL-based biomedical terminology (SNOMED CT) does indeed comply with such principles. We defined seven ontological principles (for example: each class must have at least one parent, each class must differ from its parent) and examined the properties of SNOMED (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain.Barry Smith, Waclaw Kusnierczyk, Daniel Schober, & Werner Ceusters - 2006 - In Barry Smith, Waclaw Kusnierczyk, Schober & Werner Ceusters (eds.), Proceedings of KR-MED, CEUR, vol. 222. pp. 57-65.
    Ontology is a burgeoning field, involving researchers from the computer science, philosophy, data and software engineering, logic, linguistics, and terminology domains. Many ontology-related terms with precise meanings in one of these domains have different meanings in others. Our purpose here is to initiate a path towards disambiguation of such terms. We draw primarily on the literature of biomedical informatics, not least because the problems caused by unclear or ambiguous use of terms have been there most thoroughly addressed. We advance a (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Relations in Biomedical Ontologies.Barry Smith, Werner Ceusters, Bert Klagges, Jacob Köhler, Anand Kuma, Jane Lomax, Chris Mungall, , Fabian Neuhaus, Alan Rector & Cornelius Rosse - 2005 - Genome Biology 6 (5):R46.
    To enhance the treatment of relations in biomedical ontologies we advance a methodology for providing consistent and unambiguous formal definitions of the relational expressions used in such ontologies in a way designed to assist developers and users in avoiding errors in coding and annotation. The resulting Relation Ontology can promote interoperability of ontologies and support new types of automated reasoning about the spatial and temporal dimensions of biological and medical phenomena.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Framework for a protein ontology.Darren A. Natale, Cecilia N. Arighi, Winona Barker, Judith Blake, Ti-Cheng Chang, Zhangzhi Hu, Hongfang Liu, Barry Smith & Cathy H. Wu - 2007 - BMC Bioinformatics 8 (Suppl 9):S1.
    Biomedical ontologies are emerging as critical tools in genomic and proteomic research where complex data in disparate resources need to be integrated. A number of ontologies exist that describe the properties that can be attributed to proteins; for example, protein functions are described by Gene Ontology, while human diseases are described by Disease Ontology. There is, however, a gap in the current set of ontologies—one that describes the protein entities themselves and their relationships. We have designed a PRotein Ontology (PRO) (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the application of formal principles to life science data: A case study in the Gene Ontology.Jacob Köhler, Anand Kumar & Barry Smith - 2004 - In Köhler Jacob, Kumar Anand & Smith Barry (eds.), Proceedings of DILS 2004 (Data Integration in the Life Sciences), (Lecture Notes in Bioinformatics 2994). Springer. pp. 79-94.
    Formal principles governing best practices in classification and definition have for too long been neglected in the construction of biomedical ontologies, in ways which have important negative consequences for data integration and ontology alignment. We argue that the use of such principles in ontology construction can serve as a valuable tool in error-detection and also in supporting reliable manual curation. We argue also that such principles are a prerequisite for the successful application of advanced data integration techniques such as ontology-based (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Download  
     
    Export citation  
     
    Bookmark   142 citations