Switch to: References

Add citations

You must login to add citations.
  1. How to Distinguish Parthood From Location in Bioontologies.Stefan Schulz, Philipp Daumke, Barry Smith & Udo Hahn - 2005 - In Proceedings of the AMIA Symposium. American Medical Informatics Association. pp. 669-673.
    The pivotal role of the relation part-of in the description of living organisms is widely acknowledged. Organisms are open systems, which means that in contradistinction to mechanical artifacts they are characterized by a continuous flow and exchange of matter. A closer analysis of the spatial relations in biological organisms reveals that the decision as to whether a given particular is part-of a second particular or whether it is only contained-in the second particular is often controversial. We here propose a rule-based (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • CARO: The Common Anatomy Reference Ontology.Melissa Haendel, Fabian Neuhaus, David Osumi-Sutherland, Paula M. Mabee, José L. V. Mejino Jr, Chris J. Mungall & Barry Smith - 2008 - In Anatomy Ontologies for Bioinformatics: Principles and Practice. Springer. pp. 327-349.
    The Common Anatomy Reference Ontology (CARO) is being developed to facilitate interoperability between existing anatomy ontologies for different species, and will provide a template for building new anatomy ontologies. CARO has a structural axis of classification based on the top-level nodes of the Foundational Model of Anatomy. CARO will complement the developmental process sub-ontology of the GO Biological Process ontology, using it to ensure the coherent treatment of developmental stages, and to provide a common framework for the model organism communities (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain.Barry Smith, Waclaw Kusnierczyk, Daniel Schober, & Werner Ceusters - 2006 - In Proceedings of KR-MED, CEUR, vol. 222. pp. 57-65.
    Ontology is a burgeoning field, involving researchers from the computer science, philosophy, data and software engineering, logic, linguistics, and terminology domains. Many ontology-related terms with precise meanings in one of these domains have different meanings in others. Our purpose here is to initiate a path towards disambiguation of such terms. We draw primarily on the literature of biomedical informatics, not least because the problems caused by unclear or ambiguous use of terms have been there most thoroughly addressed. We advance a (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   27 citations  
  • Foundations for a Realist Ontology of Mental Disease.Werner Ceusters & Barry Smith - 2010 - Journal of Biomedical Semantics 1 (10):1-23.
    While classifications of mental disorders have existed for over one hundred years, it still remains unspecified what terms such as 'mental disorder', 'disease' and 'illness' might actually denote. While ontologies have been called in aid to address this shortfall since the GALEN project of the early 1990s, most attempts thus far have sought to provide a formal description of the structure of some pre-existing terminology or classification, rather than of the corresponding structures and processes on the side of the patient. (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Referent Tracking: The Problem of Negative Findings.Werner Ceusters, Peter Elkin & Barry Smith - 2006 - Studies in Health Technology and Informatics 124:741-46.
    The paradigm of referent tracking is based on a realist presupposition which rejects so-called negative entities (congenital absent nipple, and the like) as spurious. How, then, can a referent tracking-based Electronic Health Record deal with what are standardly called ‘negative findings’? To answer this question we carried out an analysis of some 748 sentences drawn from patient charts and containing some form of negation. Our analysis shows that to deal with these sentences we need to introduce a new ontological relationship (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Anatomical Information Science.Barry Smith, Jose Mejino, Stefan Schulz, Anand Kumar & Cornelius Rosse - 2005 - In A. G. Cohn & D. M. Mark (eds.), Spatial Information Theory. Springer. pp. 149-164.
    The Foundational Model of Anatomy (FMA) is a map of the human body. Like maps of other sorts – including the map-like representations we find in familiar anatomical atlases – it is a representation of a certain portion of spatial reality as it exists at a certain (idealized) instant of time. But unlike other maps, the FMA comes in the form of a sophisticated ontology of its objectdomain, comprising some 1.5 million statements of anatomical relations among some 70,000 anatomical kinds. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modelling Principles and Methodologies: Relations in Anatomical Ontologies.Fabian Neuhaus & Barry Smith - 2008 - In Albert Burger, Duncan Davidson & Richard Baldock (eds.), Anatomy Ontologies for Bioinformatics: Principles and Practice. Springer. pp. 289--306.
    It is now increasingly accepted that many existing biological and medical ontologies can be improved by adopting tools and methods that bring a greater degree of logical and ontological rigor. In this chapter we will focus on the merits of a logically sound approach to ontologies from a methodological point of view. As we shall see, one crucial feature of a logically sound approach is that we have clear and functional definitions of the relational expressions such as ‘is a’ and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Ontology for Biomedical Investigations.Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H. Brush, Bill Bug, Marcus C. Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A. Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L. Lister, Phillip Lord, James Malone, Elisabetta Manduchi, Monnie McGee, Norman Morrison, James A. Overton, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Daniel Schober, Barry Smith, Larisa N. Soldatova, Christian J. Stoeckert, Chris F. Taylor, Carlo Torniai, Jessica A. Turner, Randi Vita, Patricia L. Whetzel & Jie Zheng - 2016 - PLoS ONE 11 (4):e0154556.
    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Referent Tracking for Digital Rights Management.Werner Ceusters & Barry Smith - 2007 - International Journal of Metadata, Semantics and Ontologies 2 (1):45-53.
    Digital Rights Management (DRM) covers the description, identification, trading, protection, monitoring and tracking of all forms of rights over both tangible and intangible assets. The Digital Object Identifier (DOI) system provides a framework for the persistent identification of entities involved in this domain. Although the system has been very well designed to manage object identifiers, some important questions relating to the creation and assignment of identifiers are left open. The paradigm of a Referent Tracking System (RTS) recently advanced in the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Framework for a Protein Ontology.Darren A. Natale, Cecilia N. Arighi, Winona Barker, Judith Blake, Ti-Cheng Chang, Zhangzhi Hu, Hongfang Liu, Barry Smith & Cathy H. Wu - 2007 - BMC Bioinformatics 8 (Suppl 9):S1.
    Biomedical ontologies are emerging as critical tools in genomic and proteomic research where complex data in disparate resources need to be integrated. A number of ontologies exist that describe the properties that can be attributed to proteins; for example, protein functions are described by Gene Ontology, while human diseases are described by Disease Ontology. There is, however, a gap in the current set of ontologies—one that describes the protein entities themselves and their relationships. We have designed a PRotein Ontology (PRO) (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   8 citations  
  • Ontologies as Integrative Tools for Plant Science.Ramona Walls, Balaji Athreya, Laurel Cooper, Justin Elser, Maria A. Gandolfo, Pankaj Jaiswal, Christopher J. Mungall, Justin Preece, Stefan Rensing, Barry Smith & Dennis W. Stevenson - 2012 - American Journal of Botany 99 (8):1263–1275.
    Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the Semantic Web. This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • Applied Ontology: An Introduction.Katherine Munn & Barry Smith (eds.) - 2008 - Frankfurt: ontos.
    Ontology is the philosophical discipline which aims to understand how things in the world are divided into categories and how these categories are related together. This is exactly what information scientists aim for in creating structured, automated representations, called 'ontologies,' for managing information in fields such as science, government, industry, and healthcare. Currently, these systems are designed in a variety of different ways, so they cannot share data with one another. They are often idiosyncratically structured, accessible only to those who (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Toll-Like Receptor Signaling in Vertebrates: Testing the Integration of Protein, Complex, and Pathway Data in the Protein Ontology Framework.Cecilia Arighi, Veronica Shamovsky, Anna Maria Masci, Alan Ruttenberg, Barry Smith, Darren Natale, Cathy Wu & Peter D’Eustachio - 2015 - PLoS ONE 10 (4):e0122978.
    The Protein Ontology (PRO) provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Representation of Protein Complexes in the Protein Ontology.Carol Bult, Harold Drabkin, Alexei Evsikov, Darren Natale, Cecilia Arighi, Natalia Roberts, Alan Ruttenberg, Peter D’Eustachio, Barry Smith, Judith Blake & Cathy Wu - 2011 - BMC Bioinformatics 12 (371):1-11.
    Representing species-specific proteins and protein complexes in ontologies that are both human and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Referent Tracking for Corporate Memories.Werner Ceusters & Barry Smith - 2007 - In Peter Rittgen (ed.), Handbook of Ontologies for Business Interaction. Idea Group Publishing. pp. 34-46.
    For corporate memory and enterprise ontology systems to be maximally useful, they must be freed from certain barriers placed around them by traditional knowledge management paradigms. This means, above all, that they must mirror more faithfully those portions of reality which are salient to the workings of the enterprise, including the changes that occur with the passage of time. The purpose of this chapter is to demonstrate how theories based on philosophical realism can contribute to this objective. We discuss how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ontology as the Core Discipline of Biomedical Informatics: Legacies of the Past and Recommendations for the Future Direction of Research.Barry Smith & Werner Ceusters - 2007 - In Gordana Dodig Crnkovic & Susan Stuart (eds.), Computation, Information, Cognition: The Nexus and the Liminal. Cambridge Scholars Publishing. pp. 104-122.
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Negative Findings in Electronic Health Records and Biomedical Ontologies: A Realist Approach.Werner Ceusters, Peter Elkin & Barry Smith - 2007 - International Journal of Medical Informatics 76 (3):S326-S333.
    PURPOSE—A substantial fraction of the observations made by clinicians and entered into patient records are expressed by means of negation or by using terms which contain negative qualifiers (as in “absence of pulse” or “surgical procedure not performed”). This seems at first sight to present problems for ontologies, terminologies and data repositories that adhere to a realist view and thus reject any reference to putative non-existing entities. Basic Formal Ontology (BFO) and Referent Tracking (RT) are examples of such paradigms. The (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An Improved Ontological Representation of Dendritic Cells as a Paradigm for All Cell Types.Anna Maria Masci, Cecilia N. Arighi, Alexander D. Diehl, Anne E. Liebermann, Chris Mungall, Richard H. Scheuermann, Barry Smith & Lindsay Cowell - 2009 - BMC Bioinformatics 10 (1):70.
    Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL), designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • National Center for Biomedical Ontology: Advancing Biomedicine Through Structured Organization of Scientific Knowledge.Daniel L. Rubin, Suzanna E. Lewis, Chris J. Mungall, Misra Sima, Westerfield Monte, Ashburner Michael, Christopher G. Chute, Ida Sim, Harold Solbrig, M. A. Storey, Barry Smith, John D. Richter, Natasha Noy & Mark A. Musen - 2006 - Omics: A Journal of Integrative Biology 10 (2):185-198.
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Proper Treatment of Pathologies in Biomedical Ontologies.Barry Smith & Anand Kumar - 2005 - In Proceedings of the Bio-Ontologies Workshop, Intelligent Systems for Molecular Biology (ISMB 2005). Detroit: pp. 22-23.
    In previous work on biomedical ontologies we showed how the provision of formal definitions for relations such as is_a and part_of can support new types of auto-mated reasoning about biomedical phenomena. We here extend this approach to the transformation_of characteristic of pathologies.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ontology-Based Knowledge Representation of Experiment Metadata in Biological Data Mining.Scheuermann Richard, Kong Megan, Dahlke Carl, Cai Jennifer, Lee Jamie, Qian Yu, Squires Burke, Dunn Patrick, Wiser Jeff, Hagler Herb, Herb Hagler, Barry Smith & David Karp - 2009 - In Jake Chen & Stefano Lonardi (eds.), Biological Data Mining. Boca Raton: Chapman Hall / Taylor and Francis. pp. 529-559.
    According to the PubMed resource from the U.S. National Library of Medicine, over 750,000 scientific articles have been published in the ~5000 biomedical journals worldwide in the year 2007 alone. The vast majority of these publications include results from hypothesis-driven experimentation in overlapping biomedical research domains. Unfortunately, the sheer volume of information being generated by the biomedical research enterprise has made it virtually impossible for investigators to stay aware of the latest findings in their domain of interest, let alone to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ontology Based Annotation of Contextualized Vital Signs.Goldfain Albert, Xu Min, Bona Jonathan & Barry Smith - 2013 - In Proceedings of the Fourth International Conference on Biomedical Ontology (ICBO). Montreal: pp. 28-33.
    Representing the kinetic state of a patient (posture, motion, and activity) during vital sign measurement is an important part of continuous monitoring applications, especially remote monitoring applications. In contextualized vital sign representation, the measurement result is presented in conjunction with salient measurement context metadata. We present an automated annotation system for vital sign measurements that uses ontologies from the Open Biomedical Ontology Foundry (OBO Foundry) to represent the patient’s kinetic state at the time of measurement. The annotation system is applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Referent Tracking and its Applications.Werner Ceusters & Barry Smith - 2007 - In Proceedings of the Workshop WWW2007 Workshop i3: Identity, Identifiers, Identification (Workshop on Entity-Centric Approaches to Information and Knowledge Management on the Web), Banff, Canada. CEUR.
    Referent tracking (RT) is a new paradigm, based on unique identification, for representing and keeping track of particulars. It was first introduced to support the entry and retrieval of data in electronic health records (EHRs). Its purpose is to avoid the ambiguity that arises when statements in an EHR refer to disorders or other entities on the side of the patient exclusively by means of compound descriptions utilizing general terms such as ‘pimple on nose’ or ‘small left breast tumor’. In (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • TGF-Beta Signaling Proteins and the Protein Ontology.Arighi Cecilia, Liu Hongfang, Natale Darren, Barker Winona, Drabkin Harold, Blake Judith, Barry Smith & Wu Cathy - 2009 - BMC Bioinformatics 10 (Suppl 5):S3.
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides a framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Six Questions on the Construction of Ontologies in Biomedicine.Anand Kumar, A. Burgun, W. Ceusters, J. Cimino, J. Davis, P. Elkin, I. Kalet, A. Rector, J. Rice, J. Rogers, Barry Smith & Others - 2005 - Report of the AMIA Working Group on Formal Biomedical Knowledge Representation 1.
    (Report assembled for the Workshop of the AMIA Working Group on Formal Biomedical Knowledge Representation in connection with AMIA Symposium, Washington DC, 2005.) Best practices in ontology building for biomedicine have been frequently discussed in recent years. However there is a range of seemingly disparate views represented by experts in the field. These views not only reflect the different uses to which ontologies are put, but also the experiences and disciplinary background of these experts themselves. We asked six questions related (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Non-Coding RNA Ontology : A Comprehensive Resource for the Unification of Non-Coding RNA Biology.Huang Jingshan, Eilbeck Karen, Barry Smith, A. Blake Judith, Dou Dejing, Huang Weili, A. Natale Darren, Ruttenberg Alan, Huan Jun & T. Zimmermann Michael - 2016 - Journal of Biomedical Semantics 7 (1).
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Saliva Ontology: An Ontology-Based Framework for a Salivaomics Knowledge Base.Jiye Ai, Barry Smith & David Wong - 2010 - BMC Bioinformatics 11 (1):302.
    The Salivaomics Knowledge Base (SKB) is designed to serve as a computational infrastructure that can permit global exploration and utilization of data and information relevant to salivaomics. SKB is created by aligning (1) the saliva biomarker discovery and validation resources at UCLA with (2) the ontology resources developed by the OBO (Open Biomedical Ontologies) Foundry, including a new Saliva Ontology (SALO). We define the Saliva Ontology (SALO; http://www.skb.ucla.edu/SALO/) as a consensus-based controlled vocabulary of terms and relations dedicated to the salivaomics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Plant Disease Extension of the Infectious Disease Ontology.Ramona Walls, Barry Smith, Elser Justin, Goldfain Albert & W. Stevenson Dennis - 2012 - In Proceeedings of the Third International Conference on Biomedical Ontology (CEUR 897). pp. 1-5.
    Plants from a handful of species provide the primary source of food for all people, yet this source is vulnerable to multiple stressors, such as disease, drought, and nutrient deficiency. With rapid population growth and climate uncertainty, the need to produce crops that can tolerate or resist plant stressors is more crucial than ever. Traditional plant breeding methods may not be sufficient to overcome this challenge, and methods such as highOthroughput sequencing and automated scoring of phenotypes can provide significant new (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Evolutionary Approach to the Representation of Adverse Events.Werner Ceusters, Maria Capolupo, Barry Smith & Georges De Moor - 2009 - Studies in Health Technology and Informatics 150:537-541.
    One way to detect, monitor and prevent adverse events with the help of Information Technology is by using ontologies capable of representing three levels of reality: what is the case, what is believed about reality, and what is represented. We report on how Basic Formal Ontology and Referent Tracking exhibit this capability and how they are used to develop an adverse event ontology and related data annotation scheme for the European ReMINE project.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Ontology-Based Methodology for the Migration of Biomedical Terminologies to Electronic Health Records.Barry Smith & Werner Ceusters - 2005 - In Proceedings of AMIA Symposium 2005, Washington DC,. Washington, DC: AMIA. pp. 704-708.
    Biomedical terminologies are focused on what is general, Electronic Health Records (EHRs) on what is particular, and it is commonly assumed that the step from the one to the other is unproblematic. We argue that this is not so, and that, if the EHR of the future is to fulfill its promise, then the foundations of both EHR architectures and biomedical terminologies need to be reconceived. We accordingly describe a new framework for the treatment of both generals and particulars in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Applications of the ACGT Master Ontology on Cancer.Mathias Brochhausen, Gabriele Weiler, Luis Martín, Cristian Cocos, Holger Stenzhorn, Norbert Graf, Martin Dörr, Manolis Tsiknakis & Barry Smith - 2008 - In R. Meersman & P. Herrero (eds.), Proceedings of 4th International IFIP Workshop On Semantic Web and Web Semantics (OTM 2008: Workshops), LNCS 5333. pp. 1046–1055.
    In this paper we present applications of the ACGT Master Ontology (MO) which is a new terminology resource for a transnational network providing data exchange in oncology, emphasizing the integration of both clinical and molecular data. The development of a new ontology was necessary due to problems with existing biomedical ontologies in oncology. The ACGT MO is a test case for the application of best practices in ontology development. This paper provides an overview of the application of the ontology within (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Clinical Data Wrangling Using Ontological Realism and Referent Tracking.Werner Ceusters, Chiun Yu Hsu & Barry Smith - 2014 - In Proceedings of the Fifth International Conference on Biomedical Ontology (ICBO), Houston, 2014, (CEUR, 1327). pp. 27-32.
    Ontological realism aims at the development of high quality ontologies that faithfully represent what is general in reality and to use these ontologies to render heterogeneous data collections comparable. To achieve this second goal for clinical research datasets presupposes not merely (1) that the requisite ontologies already exist, but also (2) that the datasets in question are faithful to reality in the dual sense that (a) they denote only particulars and relationships between particulars that do in fact exist and (b) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Biomedizinische Ontologien für die Praxis.M. Brochhausen & Barry Smith - 2009 - European Journal for Biomedical Informatics 1.
    Hintergrund: Biomedizinische Ontologien existieren unter anderem zur Integration von klinischen und experimentellen Daten. Um dies zu erreichen ist es erforderlich, dass die fraglichen Ontologien von einer großen Zahl von Benutzern zur Annotation von Daten verwendet werden. Wie können Ontologien das erforderliche Maß an Benutzerfreundlichkeit, Zuverlässigkeit, Kosteneffektivität und Domänenabdeckung erreichen, um weitreichende Akzeptanz herbeizuführen? -/- Material und Methoden: Wir konzentrieren uns auf zwei unterschiedliche Strategien, die zurzeit hierbei verfolgt werden. Eine davon wird von SNOMED CT im Bereich der Medizin vertreten, die (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Molecular Interactions. On the Ambiguity of Ordinary Statements in Biomedical Literature.Stefan Schulz & Ludger Jansen - 2009 - Applied Ontology (4):21-34.
    Statements about the behavior of biochemical entities (e.g., about the interaction between two proteins) abound in the literature on molecular biology and are increasingly becoming the targets of information extraction and text mining techniques. We show that an accurate analysis of the semantics of such statements reveals a number of ambiguities that have to be taken into account in the practice of biomedical ontology engineering: Such statements can not only be understood as event reporting statements, but also as ascriptions of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Guest Editorial: Ontologies for Clinical and Translational Research.Barry Smith & Richard H. Scheuermann - 2011 - Journal of Biomedical Informatics 44 (1):3--7.
    Download  
     
    Export citation  
     
    Bookmark  
  • Remarks on Logic for Process Descriptions in Ontological Reasoning: A Drug Interaction Ontology Case Study.Mitsuhiro Okada, Barry Smith & Yutaro Sugimoto - 2008 - In InterOntology. Proceedings of the First Interdisciplinary Ontology Meeting, Tokyo, Japan, 26-27 February 2008. Tokyo: Keio University Press. pp. 127-138.
    We present some ideas on logical process descriptions, using relations from the DIO (Drug Interaction Ontology) as examples and explaining how these relations can be naturally decomposed in terms of more basic structured logical process descriptions using terms from linear logic. In our view, the process descriptions are able to clarify the usual relational descriptions of DIO. In particular, we discuss the use of logical process descriptions in proving linear logical theorems. Among the types of reasoning supported by DIO one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Type-Theoretical Approach for Ontologies: The Case of Roles.Patrick Barlatier & Richard Dapoigny - 2012 - Applied Ontology 7 (3):311-356.
    In the domain of ontology design as well as in Knowledge Representation, modeling universals is a challenging problem.Most approaches that have addressed this problem rely on Description Logics (DLs) but many difficulties remain, due to under-constrained representation which reduces the inferences that can be drawn and further causes problems in expressiveness. In mathematical logic and program checking, type theories have proved to be appealing but, so far they have not been applied in the formalization of ontologies. To bridge this gap, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Atlas Poznawczy: W Stronę Fundamentów Wiedzy W Neurokognitywistyce.Russell A. Poldrack, Aniket Kittur, Donald Kalar, Eric MillerI, Christian Seppa, Yolanda Gil, Stott D. Parker, Fred W. Sabb, Robert M. Bilder & Przemysław Nowakowski - 2016 - Avant: Trends in Interdisciplinary Studies 7 (3):75-100.
    Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what “mental processes” exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Continua in Biological Systems.Ingvar Johansson - 2007 - The Monist 90 (4):499-522.
    We defend the fundamental ontological-pragmatic principle that where there are continua in reality science is often forced to make partly fiat terminological delimitations. In particular, this principle applies when it comes to describing biological organisms, their parts, properties, and relations. Human-made fiat delimitations are indispensable at the level of both individuals and the natural kinds which they instantiate. The kinds of pragmatically based ‘fiatness’ that we describe can create incompatibilities and lack of interoperability even between properly designed ontologies, if not (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Zellen in der Logik des Lebens.Niko Strobach - 2010 - Logos: Freie Zeitschrift für wissenschaftliche Philosophie 2:2-51.
    In diesem Aufsatz wird im Rahmen des Projekts einer Logik des Lebens die Ebene der Zellen und die Beziehung zwischen Lebewesen und Zellen behandelt. Es werden die Beziehungen "ist Zell-Vorfahre von", "ist Zelle von" und "ist Zelle desselben Lebewesens wie" untersucht. Postulate für Lebewesen werden umgedeutet und auf die Zellebene übertragen. Es werden Möglichkeiten diskutiert, die Vorfahren-Relation für Lebewesen auf der Grundlage der Vorfahren-Relation für Zellen zu definieren. Eine besondere Rolle spielen dabei Einzellflaschenhälse ("one-cell bottlenecks" / "single-cell bottlenecks").
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Open Biomedical Ontologies Applied to Prostate Cancer.James A. Overton, Cesare Romagnoli & Rethy Chhem - 2011 - Applied Ontology 6 (1):35-51.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Particulars Are Referred to in EHR Data? A Case Study in Integrating Referent Tracking Into an Electronic Health Record Application.Ron Rudnicki, Werner Ceusters, Shaid Manzoo & Barry Smith - 2007 - In Proceedings of the Annual Symposium of the American Medical Informatics Association, Chicago, IL. Washington, DC: AMIA. pp. 630-634.
    Referent Tracking (RT) advocates the use of instance unique identifiers to refer to the entities comprising the subject matter of patient health records. RT promises many benefits to those who use health record data to improve patient care. To further the adoption of the paradigm we provide an illustration of how data from an EHR application needs to be decomposed in order to make it accord with the tenets of RT. We describe the ontological principles on which this decomposition is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classificatory Theory in Data-Intensive Science: The Case of Open Biomedical Ontologies.Sabina Leonelli - 2012 - International Studies in the Philosophy of Science 26 (1):47 - 65.
    Knowledge-making practices in biology are being strongly affected by the availability of data on an unprecedented scale, the insistence on systemic approaches and growing reliance on bioinformatics and digital infrastructures. What role does theory play within data-intensive science, and what does that tell us about scientific theories in general? To answer these questions, I focus on Open Biomedical Ontologies, digital classification tools that have become crucial to sharing results across research contexts in the biological and biomedical sciences, and argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Spatio-Temporal Ontology for Geographic Information Integration.Thomas Bittner & Barry Smith - 2009 - International Journal for Geographical Information Science 23 (6):765-798.
    This paper presents an axiomatic formalization of a theory of top-level relations between three categories of entities: individuals, universals, and collections. We deal with a variety of relations between entities in these categories, including the sub-universal relation among universals and the parthood relation among individuals, as well as cross-categorial relations such as instantiation and membership. We show that an adequate understanding of the formal properties of such relations – in particular their behavior with respect to time – is critical for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grains, Components and Mixtures in Biomedical Ontologies.Ludger Jansen & Schulz Stefan - 2011 - Journal of Biomedical Semantics 2 (4).
    BACKGROUND -/- In biomedical ontologies, mereological relations have always been subject to special interest due to their high relevance in structural descriptions of anatomical entities, cells, and biomolecules. This paper investigates two important subrelations of has_proper_part, viz. the relation has_grain, which relates a collective entity to its multiply occurring uniform parts (e.g., water molecules in a portion of water), and the relation has_component, which relates a compound to its constituents (e.g., molecules to the atoms they consist of). -/- METHOD -/- (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  • Representing Dispositions.Johannes Röhl & Ludger Jansen - 2011 - Journal of Biomedical Semantics 2 (4).
    Dispositions and tendencies feature significantly in the biomedical domain and therefore in representations of knowledge of that domain. They are not only important for specific applications like an infectious disease ontology, but also as part of a general strategy for modelling knowledge about molecular interactions. But the task of representing dispositions in some formal ontological systems is fraught with several problems, which are partly due to the fact that Description Logics can only deal well with binary relations. The paper will (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • An Integrative Model for Representation of Signaling Pathways on the Basis of Device Ontology.Takako Takai-Igarashi & Riichiro Mizoguchi - 2005 - Transactions of the Japanese Society for Artificial Intelligence 20:406-416.
    Download  
     
    Export citation  
     
    Bookmark  
  • From Concepts to Clinical Reality: An Essay on the Benchmarking of Biomedical Terminologies.Barry Smith - 2006 - Journal of Biomedical Informatics 39 (3):288-298.
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and surveys (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Strategies for Referent Tracking in Electronic Health Records.Werner Ceusters & Barry Smith - 2006 - Journal of Biomedical Informatics 39 (3):362-378.
    The goal of referent tracking is to create an ever-growing pool of data relating to the entities existing in concrete spatiotemporal reality. In the context of Electronic Healthcare Records (EHRs) the relevant concrete entities are not only particular patients but also their parts, diseases, therapies, lesions, and so forth, insofar as these are salient to diagnosis and treatment. Within a referent tracking system, all such entities are referred to directly and explicitly, something which cannot be achieved when familiar concept-based systems (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Introduction: What is Ontology For.Katherine Munn - 2008 - In Munn Katherine & Smith Barry (eds.), Applied Ontology: An Introduction. Walter de Gruyter. pp. 7-19.
    Download  
     
    Export citation  
     
    Bookmark