Switch to: Citations

Add references

You must login to add references.
  1. Is classical electrodynamics an inconsistent theory?Gordon Belot - 2007 - Canadian Journal of Philosophy 37 (2):263-282.
    Canadian Journal of Philosophy, 37: 263–282. [preprint] This paper is a critical discussion of Mathias Frisch’s book Inconsistency, Asymmetry, and Nonlocality.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The electron: Development of the first elementary particle theory.Fritz Rohrlich - 1973 - In Jagdish Mehra (ed.), The physicist's conception of nature. Boston,: Reidel. pp. 331--369.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Disappearance and Reappearance of Potential Energy in Classical and Quantum Electrodynamics.Charles T. Sebens - 2022 - Foundations of Physics 52 (5):1-30.
    In electrostatics, we can use either potential energy or field energy to ensure conservation of energy. In electrodynamics, the former option is unavailable. To ensure conservation of energy, we must attribute energy to the electromagnetic field and, in particular, to electromagnetic radiation. If we adopt the standard energy density for the electromagnetic field, then potential energy seems to disappear. However, a closer look at electrodynamics shows that this conclusion actually depends on the kind of matter being considered. Although we cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The fundamentality of fields.Charles T. Sebens - 2022 - Synthese 200 (5):1-28.
    There is debate as to whether quantum field theory is, at bottom, a quantum theory of fields or particles. One can take a field approach to the theory, using wave functionals over field configurations, or a particle approach, using wave functions over particle configurations. This article argues for a field approach, presenting three advantages over a particle approach: particle wave functions are not available for photons, a classical field model of the electron gives a superior account of both spin and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Putting positrons into classical Dirac field theory.Charles T. Sebens - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:8-18.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Particles, fields, and the measurement of electron spin.Charles T. Sebens - 2020 - Synthese 198 (12):11943-11975.
    This article compares treatments of the Stern–Gerlach experiment across different physical theories, building up to a novel analysis of electron spin measurement in the context of classical Dirac field theory. Modeling the electron as a classical rigid body or point particle, we can explain why the entire electron is always found at just one location on the detector but we cannot explain why there are only two locations where the electron is ever found. Using non-relativistic or relativistic quantum mechanics, we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How electrons spin.Charles T. Sebens - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:40-50.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Forces on fields.Charles T. Sebens - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:1-11.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations.Charles T. Sebens - 2021 - Foundations of Physics 51 (4):1-39.
    Within quantum chemistry, the electron clouds that surround nuclei in atoms and molecules are sometimes treated as clouds of probability and sometimes as clouds of charge. These two roles, tracing back to Schrödinger and Born, are in tension with one another but are not incompatible. Schrödinger’s idea that the nucleus of an atom is surrounded by a spread-out electron charge density is supported by a variety of evidence from quantum chemistry, including two methods that are used to determine atomic and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Electromagnetic mass revisited.Julian Schwinger - 1983 - Foundations of Physics 13 (3):373-383.
    Examples of uniformly moving charge distributions that possess conserved electromagnetic stress tensors are exhibited. These constitute stable systems with covariantly characterized electromagnetic mass. This note, on a topic to which Paul Dirac made a significant contribution in 1938, is dedicated to him for his 80th birthday.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Against fields.Dustin Lazarovici - 2017 - European Journal for Philosophy of Science 8 (2):145-170.
    Using the example of classical electrodynamics, I argue that the concept of fields as mediators of particle interactions is fundamentally flawed and reflects a misguided attempt to retrieve Newtonian concepts in relativistic theories. This leads to various physical and metaphysical problems that are discussed in detail. In particular, I emphasize that physics has not found a satisfying solution to the self-interaction problem in the context of the classical field theory. To demonstrate the superiority of a pure particle ontology, I defend (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum Electrostatics, Gauss’s Law, and a Product Picture for Quantum Electrodynamics; or, the Temporal Gauge Revised.Bernard S. Kay - 2021 - Foundations of Physics 52 (1):1-61.
    We provide a suitable theoretical foundation for the notion of the quantum coherent state which describes the electrostatic field due to a static external macroscopic charge distribution introduced by the author in 1998 and use it to rederive the formulae obtained in 1998 for the inner product of a pair of such states. (We also correct an incorrect factor of 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\pi$$\end{document} in some of those formulae.) Contrary to what one might expect, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inconsistency in classical electrodynamics.Mathias Frisch - 2004 - Philosophy of Science 71 (4):525-549.
    I show that the standard approach to modeling phenomena involving microscopic classical electrodynamics is mathematically inconsistent. I argue that there is no conceptually unproblematic and consistent theory covering the same phenomena to which this inconsistent theory can be thought of as an approximation; and I propose a set of conditions for the acceptability of inconsistent theories.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Discussion note: Conceptual problems in classical electrodynamics.Mathias Frisch - 2008 - Philosophy of Science 75 (1):93-105.
    I have argued that the standard ways of modeling classical particle-field interactions rely on a set of inconsistent assumptions. This claim has been criticized in (Muller forthcoming). In this paper I respond to some of Muller's criticism.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Conceptual problems in classical electrodynamics.Mathias Frisch - 2008 - Philosophy of Science 75 (1):93-105.
    In Frisch 2004 and 2005 I showed that the standard ways of modeling particle-field interactions in classical electrodynamics, which exclude the interactions of a particle with its own field, results in a formal inconsistency, and I argued that attempts to include the self-field lead to numerous conceptual problems. In this paper I respond to criticism of my account in Belot 2007 and Muller 2007. I concede that this inconsistency in itself is less telling than I suggested earlier but argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The fate of 'particles' in quantum field theories with interactions.Doreen Fraser - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):841-859.
    Most philosophical discussion of the particle concept that is afforded by quantum field theory has focused on free systems. This paper is devoted to a systematic investigation of whether the particle concept for free systems can be extended to interacting systems. The possible methods of accomplishing this are considered and all are found unsatisfactory. Therefore, an interacting system cannot be interpreted in terms of particles. As a consequence, quantum field theory does not support the inclusion of particles in our ontology. (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Haag’s Theorem and its Implications for the Foundations of Quantum Field Theory.John Earman & Doreen Fraser - 2006 - Erkenntnis 64 (3):305 - 344.
    Although the philosophical literature on the foundations of quantum field theory recognizes the importance of Haag’s theorem, it does not provide a clear discussion of the meaning of this theorem. The goal of this paper is to make up for this deficit. In particular, it aims to set out the implications of Haag’s theorem for scattering theory, the interaction picture, the use of non-Fock representations in describing interacting fields, and the choice among the plethora of the unitarily inequivalent representations of (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • An Introduction to Quantum Field Theory.Michael Peskin & Dan Schroeder - 1995 - Westview Press.
    An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • An Introduction to the Philosophy of Physics: Locality, Fields, Energy, and Mass.Marc Lange - 2002 - Blackwell.
    This book combines physics, history, and philosophy in a radical new approach to introducing the philosophy of physics.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Inconsistency, asymmetry, and non-locality: a philosophical investigation of classical electrodynamics.Mathias Frisch - 2005 - New York: Oxford University Press.
    Mathias Frisch provides the first sustained philosophical discussion of conceptual problems in classical particle-field theories. Part of the book focuses on the problem of a satisfactory equation of motion for charged particles interacting with electromagnetic fields. As Frisch shows, the standard equation of motion results in a mathematically inconsistent theory, yet there is no fully consistent and conceptually unproblematic alternative theory. Frisch describes in detail how the search for a fundamental equation of motion is partly driven by pragmatic considerations (like (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations