Switch to: Citations

Add references

You must login to add references.
  1. A new applied approach for executing computations with infinite and infinitesimal quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An Unsolvable Problem of Elementary Number Theory.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):73-74.
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • Contributions to the Founding of the Theory of Transfinite Numbers. [REVIEW]Cassius J. Keyser - 1916 - Journal of Philosophy, Psychology and Scientific Methods 13 (25):697-697.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Numerical computations and mathematical modelling with infinite and infinitesimal numbers.Yaroslav Sergeyev - 2009 - Journal of Applied Mathematics and Computing 29:177-195.
    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this paper, a recently introduced computational methodology (that is not related to the non-standard analysis) is used to work with finite, infinite, and infinitesimal numbers numerically. This can be done on a new kind of a computer – the Infinity Computer – able to work with all these types of numbers. The new computational tools both give possibilities to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Study of Mathematical Determination through Bertrand’s Paradox.Davide Rizza - 2018 - Philosophia Mathematica 26 (3):375-395.
    Certain mathematical problems prove very hard to solve because some of their intuitive features have not been assimilated or cannot be assimilated by the available mathematical resources. This state of affairs triggers an interesting dynamic whereby the introduction of novel conceptual resources converts the intuitive features into further mathematical determinations in light of which a solution to the original problem is made accessible. I illustrate this phenomenon through a study of Bertrand’s paradox.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the scheme of induction for bounded arithmetic formulas.A. J. Wilkie & J. B. Paris - 1987 - Annals of Pure and Applied Logic 35 (C):261-302.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
    Download  
     
    Export citation  
     
    Bookmark   707 citations  
  • Non-standard Analysis.Gert Heinz Müller - 2016 - Princeton University Press.
    Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Finite combinatory processes—formulation.Emil L. Post - 1936 - Journal of Symbolic Logic 1 (3):103-105.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • J. P. Mayberry. The foundations of mathematics in the theory of sets. Encyclopedia of mathematics and its applications, vol. 82. Cambridge University Press, Cambridge 2000, New York 2001, etc., xx + 424 pp. [REVIEW]W. W. Tait - 2002 - Bulletin of Symbolic Logic 8 (3):424-426.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • .Max Gander - 2014 - 96 (2):369-415.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Consistency of the Continuum Hypothesis.Kurt Godel - 1940 - Princeton University Press.
    Previously published: Princeton University Press, 1940.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Higher order numerical differentiation on the Infinity Computer.Yaroslav Sergeyev - 2011 - Optimization Letters 5 (4):575-585.
    There exist many applications where it is necessary to approximate numerically derivatives of a function which is given by a computer procedure. In particular, all the fields of optimization have a special interest in such a kind of information. In this paper, a new way to do this is presented for a new kind of a computer - the Infinity Computer - able to work numerically with finite, infinite, and infinitesimal number. It is proved that the Infinity Computer is able (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpretation of percolation in terms of infinity computations.Yaroslav Sergeyev, Dmitri Iudin & Masaschi Hayakawa - 2012 - Applied Mathematics and Computation 218 (16):8099-8111.
    In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. The new approach does not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers.Yaroslav Sergeyev - 2007 - Chaos, Solitons and Fractals 33 (1):50-75.
    The paper considers a new type of objects – blinking fractals – that are not covered by traditional theories studying dynamics of self-similarity processes. It is shown that the new approach allows one to give various quantitative characteristics of the newly introduced and traditional fractals using infinite and infinitesimal numbers proposed recently. In this connection, the problem of the mathematical modelling of continuity is discussed in detail. A strong advantage of the introduced computational paradigm consists of its well-marked numerical character (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Observability of Turing Machines: a refinement of the theory of computation.Yaroslav Sergeyev & Alfredo Garro - 2010 - Informatica 21 (3):425–454.
    The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the object of the study) by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Counting systems and the First Hilbert problem.Yaroslav Sergeyev - 2010 - Nonlinear Analysis Series A 72 (3-4):1701-1708.
    The First Hilbert problem is studied in this paper by applying two instruments: a new methodology distinguishing between mathematical objects and mathematical languages used to describe these objects; and a new numeral system allowing one to express different infinite numbers and to use these numbers for measuring infinite sets. Several counting systems are taken into consideration. It is emphasized in the paper that different mathematical languages can describe mathematical objects (in particular, sets and the number of their elements) with different (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Evaluating the exact infinitesimal values of area of Sierpinski's carpet and volume of Menger's sponge.Yaroslav Sergeyev - 2009 - Chaos, Solitons and Fractals 42: 3042–3046.
    Very often traditional approaches studying dynamics of self-similarity processes are not able to give their quantitative characteristics at infinity and, as a consequence, use limits to overcome this difficulty. For example, it is well know that the limit area of Sierpinski’s carpet and volume of Menger’s sponge are equal to zero. It is shown in this paper that recently introduced infinite and infinitesimal numbers allow us to use exact expressions instead of limits and to calculate exact infinitesimal values of areas (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area.Yaroslav Sergeyev - 2016 - Communications in Nonlinear Science and Numerical Simulation 31 (1-3):21–29.
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Olympic medals ranks, lexicographic ordering and numerical infinities.Yaroslav Sergeyev - 2015 - The Mathematical Intelligencer 37 (2):4-8.
    Several ways used to rank countries with respect to medals won during Olympic Games are discussed. In particular, it is shown that the unofficial rank used by the Olympic Committee is the only rank that does not allow one to use a numerical counter for ranking – this rank uses the lexicographic ordering to rank countries: one gold medal is more precious than any number of silver medals and one silver medal is more precious than any number of bronze medals. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • UN SEMPLICE MODO PER TRATTARE LE GRANDEZZE INFINITE ED INFINITESIME.Yaroslav Sergeyev - 2015 - la Matematica Nella Società E Nella Cultura: Rivista Dell’Unione Matematica Italiana, Serie I 8:111-147.
    A new computational methodology allowing one to work in a new way with infinities and infinitesimals is presented in this paper. The new approach, among other things, gives the possibility to calculate the number of elements of certain infinite sets, avoids indeterminate forms and various kinds of divergences. This methodology has been used by the author as a starting point in developing a new kind of computer – the Infinity Computer – able to execute computations and to store in its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains.Yaroslav Sergeyev - 2009 - Nonlinear Analysis Series A 71 (12):e1688-e1707.
    The goal of this paper consists of developing a new (more physical and numerical in comparison with standard and non-standard analysis approaches) point of view on Calculus with functions assuming infinite and infinitesimal values. It uses recently introduced infinite and infinitesimal numbers being in accordance with the principle ‘The part is less than the whole’ observed in the physical world around us. These numbers have a strong practical advantage with respect to traditional approaches: they are representable at a new kind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals.Yaroslav Sergeyev - 2010 - Rendiconti Del Seminario Matematico dell'Università E Del Politecnico di Torino 68 (2):95–113.
    A recently developed computational methodology for executing numerical calculations with infinities and infinitesimals is described in this paper. The approach developed has a pronounced applied character and is based on the principle “The part is less than the whole” introduced by the ancient Greeks. This principle is applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The point of view on infinities and infinitesimals (and in general, on Mathematics) presented in this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • ontributions to the Founding of the Theory of Transfinite Numbers. [REVIEW]Georg Cantor - 1916 - Ancient Philosophy (Misc) 26:638.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer.Yaroslav Sergeyev - 2013 - Applied Mathematics and Computation 219 (22):10668–10681.
    There exists a huge number of numerical methods that iteratively construct approximations to the solution y(x) of an ordinary differential equation (ODE) y′(x) = f(x,y) starting from an initial value y_0=y(x_0) and using a finite approximation step h that influences the accuracy of the obtained approximation. In this paper, a new framework for solving ODEs is presented for a new kind of a computer – the Infinity Computer (it has been patented and its working prototype exists). The new computer is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • [Omnibus Review].C. Smorynski - 1979 - Journal of Symbolic Logic 44 (1):116-119.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Using blinking fractals for mathematical modelling of processes of growth in biological systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological systems including their (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations