Switch to: References

Add citations

You must login to add citations.
  1. On Non-Eliminative Structuralism. Unlabeled Graphs as a Case Study, Part A†.Hannes Leitgeb - 2020 - Philosophia Mathematica 28 (3):317-346.
    This is Part A of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A summarizes the general attractions of non-eliminative structuralism. Afterwards, it motivates an understanding of unlabeled graphs as structures sui generis and develops a corresponding axiomatic theory of unlabeled graphs. As the theory demonstrates, graph theory can be developed consistently without eliminating unlabeled graphs in favour of sets; and the usual structuralist criterion of identity can (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why pure mathematical truths are metaphysically necessary: a set-theoretic explanation.Hannes Leitgeb - 2020 - Synthese 197 (7):3113-3120.
    Pure mathematical truths are commonly thought to be metaphysically necessary. Assuming the truth of pure mathematics as currently pursued, and presupposing that set theory serves as a foundation of pure mathematics, this article aims to provide a metaphysical explanation of why pure mathematics is metaphysically necessary.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Cognitive access to numbers: The philosophical significance of empirical findings about basic number abilities.Marcus Giaquinto - unknown
    How can we acquire a grasp of cardinal numbers, even the first very small positive cardinal numbers, given that they are abstract mathematical entities? That problem of cognitive access is the main focus of this paper. All the major rival views about the nature and existence of cardinal numbers face difficulties; and the view most consonant with our normal thought and talk about numbers, the view that cardinal numbers are sizes of sets, runs into the cognitive access problem. The source (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • ‘Mathematical Platonism’ Versus Gathering the Dead: What Socrates teaches Glaucon &dagger.Colin McLarty - 2005 - Philosophia Mathematica 13 (2):115-134.
    Glaucon in Plato's _Republic_ fails to grasp intermediates. He confuses pursuing a goal with achieving it, and so he adopts ‘mathematical platonism’. He says mathematical objects are eternal. Socrates urges a seriously debatable, and seriously defensible, alternative centered on the destruction of hypotheses. He offers his version of geometry and astronomy as refuting the charge that he impiously ‘ponders things up in the sky and investigates things under the earth and makes the weaker argument the stronger’. We relate his account (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Aristotelian finitism.Tamer Nawar - 2015 - Synthese 192 (8):2345-2360.
    It is widely known that Aristotle rules out the existence of actual infinities but allows for potential infinities. However, precisely why Aristotle should deny the existence of actual infinities remains somewhat obscure and has received relatively little attention in the secondary literature. In this paper I investigate the motivations of Aristotle’s finitism and offer a careful examination of some of the arguments considered by Aristotle both in favour of and against the existence of actual infinities. I argue that Aristotle has (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Objectivity in Ethics and Mathematics.Justin Clarke-Doane - 2015 - Proceedings of the Aristotelian Society: The Virtual Issue 3.
    How do axioms, or first principles, in ethics compare to those in mathematics? In this companion piece to G.C. Field's 1931 "On the Role of Definition in Ethics", I argue that there are similarities between the cases. However, these are premised on an assumption which can be questioned, and which highlights the peculiarity of normative inquiry.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Single-tape and multi-tape Turing machines through the lens of the Grossone methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.
    The paper investigates how the mathematical languages used to describe and to observe automatic computations influence the accuracy of the obtained results. In particular, we focus our attention on Single and Multi-tape Turing machines which are described and observed through the lens of a new mathematical language which is strongly based on three methodological ideas borrowed from Physics and applied to Mathematics, namely: the distinction between the object (we speak here about a mathematical object) of an observation and the instrument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set Size and the Part–Whole Principle.Matthew W. Parker - 2013 - Review of Symbolic Logic (4):1-24.
    Recent work has defended “Euclidean” theories of set size, in which Cantor’s Principle (two sets have equally many elements if and only if there is a one-to-one correspondence between them) is abandoned in favor of the Part-Whole Principle (if A is a proper subset of B then A is smaller than B). It has also been suggested that Gödel’s argument for the unique correctness of Cantor’s Principle is inadequate. Here we see from simple examples, not that Euclidean theories of set (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Categories without Structures.Andrei Rodin - 2011 - Philosophia Mathematica 19 (1):20-46.
    The popular view according to which category theory provides a support for mathematical structuralism is erroneous. Category-theoretic foundations of mathematics require a different philosophy of mathematics. While structural mathematics studies ‘invariant form’ (Awodey) categorical mathematics studies covariant and contravariant transformations which, generally, have no invariants. In this paper I develop a non-structuralist interpretation of categorical mathematics.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Infinite Number and Distance.Jeremy Gwiazda - 2012 - Constructivist Foundations 7 (2):126-130.
    Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual analysis. In particular, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reference to numbers in natural language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this view, numbers are not primarily treated abstract objects, (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • The ethics–mathematics analogy.Justin Clarke-Doane - 2019 - Philosophy Compass 15 (1):e12641.
    Ethics and mathematics have long invited comparisons. On the one hand, both ethical and mathematical propositions can appear to be knowable a priori, if knowable at all. On the other hand, mathematical propositions seem to admit of proof, and to enter into empirical scientific theories, in a way that ethical propositions do not. In this article, I discuss apparent similarities and differences between ethical (i.e., moral) and mathematical knowledge, realistically construed -- i.e., construed as independent of human mind and languages. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • John P. Burgess. Rigor and Structure. Oxford: Oxford University Press, 2015. ISBN: 978-0-19-872222-9 ; 978-0-19-103360-5 . Pp. xii + 215. [REVIEW]Richard Pettigrew - 2016 - Philosophia Mathematica 24 (1):129-136.
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotle on the subject matter of geometry.Richard Pettigrew - 2009 - Phronesis 54 (3):239-260.
    I offer a new interpretation of Aristotle's philosophy of geometry, which he presents in greatest detail in Metaphysics M 3. On my interpretation, Aristotle holds that the points, lines, planes, and solids of geometry belong to the sensible realm, but not in a straightforward way. Rather, by considering Aristotle's second attempt to solve Zeno's Runner Paradox in Book VIII of the Physics , I explain how such objects exist in the sensibles in a special way. I conclude by considering the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Platonism and aristotelianism in mathematics.Richard Pettigrew - 2008 - Philosophia Mathematica 16 (3):310-332.
    Philosophers of mathematics agree that the only interpretation of arithmetic that takes that discourse at 'face value' is one on which the expressions 'N', '0', '1', '+', and 'x' are treated as proper names. I argue that the interpretation on which these expressions are treated as akin to free variables has an equal claim to be the default interpretation of arithmetic. I show that no purely syntactic test can distinguish proper names from free variables, and I observe that any semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Identity in Homotopy Type Theory, Part I: The Justification of Path Induction.James Ladyman & Stuart Presnell - 2015 - Philosophia Mathematica 23 (3):386-406.
    Homotopy Type Theory is a proposed new language and foundation for mathematics, combining algebraic topology with logic. An important rule for the treatment of identity in HoTT is path induction, which is commonly explained by appeal to the homotopy interpretation of the theory's types, tokens, and identities as spaces, points, and paths. However, if HoTT is to be an autonomous foundation then such an interpretation cannot play a fundamental role. In this paper we give a derivation of path induction, motivated (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Bernulf Kanitscheider. Natur und Zahl: Die Mathematisierbarkeit der Welt [Nature and Number: The Mathematizability of the World]. Berlin: Springer Verlag, 2013. ISBN: 978-3-642-37707-5 ; 978-3-642-37708-2 . Pp. vii + 385. [REVIEW]William Lane Craig - 2016 - Philosophia Mathematica 24 (1):136-141.
    Download  
     
    Export citation  
     
    Bookmark  
  • Methods in ethics: Introduction.Ben Colburn - 2015 - The Virtual Issue of the Aristotelian Society 3: Methods in Ethics.
    The Aristotelian Society’s Virtual Issue is a free, online publication, made publically available on the Aristotelian Society website. Each volume is theme-based, collecting together papers from the archives of the Proceedings of the Aristotelian Society and the Proceedings of the Aristotelian Society Supplementary Volume that address the chosen theme. This year's Virtual Issue includes a selection of papers from across the Society’s fourteen decades, each accompanied by a specially commissioned present-day response. The aim of the volume is to aid reflection (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Truth about Realism: Natural Realism, Many Worlds, and Global M-Realism.Anoop Gupta - 2019 - Philosophia 47 (5):1487-1499.
    An attempt was made to show how we can plausibly commit to mathematical realism. For the purpose of illustration, a defence of natural realism for arithmetic was developed that draws upon the American pragmatist’s, Hillary Putnam’s, early and later writings. Natural realism is the idea that truth is recognition-transcendent and knowable. It was suggested that the natural realist should embrace, globally, what N. Tennant has identified as M-realism (Tennant 1997, 160). M-realism is the idea that one rejects bivalence and assents (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Book Reviews. [REVIEW][author unknown] - 2005 - History and Philosophy of Logic 26 (2):145-172.
    Download  
     
    Export citation  
     
    Bookmark