Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory.T. Jech - 2005 - Bulletin of Symbolic Logic 11 (2):243-245.
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • (1 other version)Frege: Philosophy of Mathematics.Michael DUMMETT - 1991 - Philosophy 68 (265):405-411.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • From Mathematics to Philosophy.Hao Wang - 1975 - British Journal for the Philosophy of Science 26 (2):170-174.
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • A Subject with no Object.Zoltan Gendler Szabo, John P. Burgess & Gideon Rosen - 1999 - Philosophical Review 108 (1):106.
    This is the first systematic survey of modern nominalistic reconstructions of mathematics, and for this reason alone it should be read by everyone interested in the philosophy of mathematics and, more generally, in questions concerning abstract entities. In the bulk of the book, the authors sketch a common formal framework for nominalistic reconstructions, outline three major strategies such reconstructions can follow, and locate proposals in the literature with respect to these strategies. The discussion is presented with admirable precision and clarity, (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • The Logic of Provability.George Boolos - 1993 - Cambridge and New York: Cambridge University Press.
    This book, written by one of the most distinguished of contemporary philosophers of mathematics, is a fully rewritten and updated successor to the author's earlier The Unprovability of Consistency. Its subject is the relation between provability and modal logic, a branch of logic invented by Aristotle but much disparaged by philosophers and virtually ignored by mathematicians. Here it receives its first scientific application since its invention. Modal logic is concerned with the notions of necessity and possibility. What George Boolos does (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Set Theory and its Philosophy: A Critical Introduction.Michael D. Potter - 2004 - Oxford, England: Oxford University Press.
    Michael Potter presents a comprehensive new philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • A subject with no object: strategies for nominalistic interpretation of mathematics.John P. Burgess & Gideon Rosen - 1997 - New York: Oxford University Press. Edited by Gideon A. Rosen.
    Numbers and other mathematical objects are exceptional in having no locations in space or time or relations of cause and effect. This makes it difficult to account for the possibility of the knowledge of such objects, leading many philosophers to embrace nominalism, the doctrine that there are no such objects, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. This book cuts through a host of technicalities that have obscured previous (...)
    Download  
     
    Export citation  
     
    Bookmark   155 citations  
  • Mathematics in philosophy: selected essays.Charles Parsons - 1983 - Ithaca, N.Y.: Cornell University Press.
    This important book by a major American philosopher brings together eleven essays treating problems in logic and the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Pluralities and Sets.Øystein Linnebo - 2010 - Journal of Philosophy 107 (3):144-164.
    Say that some things form a set just in case there is a set whose members are precisely the things in question. For instance, all the inhabitants of New York form a set. So do all the stars in the universe. And so do all the natural numbers. Under what conditions do some things form a set?
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Iteration Again.George Boolos - 1989 - Philosophical Topics 17 (2):5-21.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Kit Fine: First-Order Modal Theories I--Sets.First-Order Modal Theories.First-Order Modal Theories III--Facts.W. Kroon - 1988 - Journal of Symbolic Logic 53 (4):1262-1269.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Boolos on the justification of set theory.Alexander Paseau - 2007 - Philosophia Mathematica 15 (1):30-53.
    George Boolos has argued that the iterative conception of set justifies most, but not all, the ZFC axioms, and that a second conception of set, the Frege-von Neumann conception (FN), justifies the remaining axioms. This article challenges Boolos's claim that FN does better than the iterative conception at justifying the axioms in question.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Slim models of zermelo set theory.A. R. D. Mathias - 2001 - Journal of Symbolic Logic 66 (2):487-496.
    Working in Z + KP, we give a new proof that the class of hereditarily finite sets cannot be proved to be a set in Zermelo set theory, extend the method to establish other failures of replacement, and exhibit a formula Φ(λ, a) such that for any sequence $\langle A_{\lambda} \mid \lambda \text{a limit ordinal} \rangle$ where for each $\lambda, A_{\lambda} \subseteq ^{\lambda}2$ , there is a supertransitive inner model of Zermelo containing all ordinals in which for every λ A (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (5 other versions)What is Cantor's Continuum Problem?Kurt Gödel - 1983 - In Paul Benacerraf & Hilary Putnam (eds.), Philosophy of Mathematics: Selected Readings (2nd Edition). Cambridge University Press. pp. 470-485.
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • From Mathematics to Philosophy.Hao Wang - 1974 - London and Boston: Routledge.
    First published in 1974. Despite the tendency of contemporary analytic philosophy to put logic and mathematics at a central position, the author argues it failed to appreciate or account for their rich content. Through discussions of such mathematical concepts as number, the continuum, set, proof and mechanical procedure, the author provides an introduction to the philosophy of mathematics and an internal criticism of the then current academic philosophy. The material presented is also an illustration of a new, more general method (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • (5 other versions)What is Cantor's Continuum Problem?Kurt Gödel - 1947 - The American Mathematical Monthly 54 (9):515--525.
    Download  
     
    Export citation  
     
    Bookmark   223 citations  
  • Logics of Time and Computation.Robert Goldblatt - 1992 - CSLI Publications.
    Sets out the basic theory of normal modal and temporal propositional logics; applies this theory to logics of discrete (integer), dense (rational), and continuous (real) time, to the temporal logic of henceforth, next, and until, and to the propositional dynamic logic of regular programs.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • (3 other versions)Our knowledge of mathematical objects.Kit Fine - 2005 - In Tamar Szabó Gendler & John Hawthorne (eds.), Oxford Studies in Epistemology. Oxford University Press. pp. 89-109.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Mathematical logic.Joseph Robert Shoenfield - 1967 - Reading, Mass.,: Addison-Wesley.
    8.3 The consistency proof -- 8.4 Applications of the consistency proof -- 8.5 Second-order arithmetic -- Problems -- Chapter 9: Set Theory -- 9.1 Axioms for sets -- 9.2 Development of set theory -- 9.3 Ordinals -- 9.4 Cardinals -- 9.5 Interpretations of set theory -- 9.6 Constructible sets -- 9.7 The axiom of constructibility -- 9.8 Forcing -- 9.9 The independence proofs -- 9.10 Large cardinals -- Problems -- Appendix The Word Problem -- Index.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • Frege.Michael Dummett - 1981 - Cambridge: Harvard University Press.
    In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume ...
    Download  
     
    Export citation  
     
    Bookmark   235 citations  
  • (2 other versions)Set theory.Thomas Jech - 1981 - Journal of Symbolic Logic.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • (2 other versions)First-order modal theories I--sets.Kit Fine - 1981 - Noûs 15 (2):177-205.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)The iterative conception of set.George Boolos - 1971 - Journal of Philosophy 68 (8):215-231.
    Download  
     
    Export citation  
     
    Bookmark   202 citations  
  • Models of second-order zermelo set theory.Gabriel Uzquiano - 1999 - Bulletin of Symbolic Logic 5 (3):289-302.
    In [12], Ernst Zermelo described a succession of models for the axioms of set theory as initial segments of a cumulative hierarchy of levelsUαVα. The recursive definition of theVα's is:Thus, a little reflection on the axioms of Zermelo-Fraenkel set theory shows thatVω, the first transfinite level of the hierarchy, is a model of all the axioms ofZFwith the exception of the axiom of infinity. And, in general, one finds that ifκis a strongly inaccessible ordinal, thenVκis a model of all of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Speaking of everything.Richard L. Cartwright - 1994 - Noûs 28 (1):1-20.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Logics of Time and Computation.Robert Goldblatt - 1990 - Studia Logica 49 (2):284-286.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • (3 other versions)Our Knowledge of Mathematical Objects.Kit Fine - 2005 - In Tamar Szabo Gendler & John Hawthorne (eds.), Oxford Studies in Epistemology Volume 1. Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • (1 other version)Review: Azriel Levy, Axiom Schemata of Strong Infinity in Axiomatic Set Theory. [REVIEW]J. C. Shepherdson - 1962 - Journal of Symbolic Logic 27 (1):88-89.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (5 other versions)What is Cantor’s continuum problem?Kurt Gödel - 1964 - In Paul Benacerraf & Hilary Putnam (eds.), Philosophy of Mathematics: Selected Readings. Englewood Cliffs, NJ, USA: Cambridge University Press. pp. 470–485.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Relatively Unrestricted Quantification.Kit Fine - 2006 - In Agustín Rayo & Gabriel Uzquiano (eds.), Absolute generality. New York: Oxford University Press. pp. 20-44.
    There are four broad grounds upon which the intelligibility of quantification over absolutely everything has been questioned—one based upon the existence of semantic indeterminacy, another on the relativity of ontology to a conceptual scheme, a third upon the necessity of sortal restriction, and the last upon the possibility of indefinite extendibility. The argument from semantic indeterminacy derives from general philosophical considerations concerning our understanding of language. For the Skolem–Lowenheim Theorem appears to show that an understanding of quanti- fication over absolutely (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • (3 other versions)Our Knowledge of Mathematical Objects.Kit Fine - 2006 - Oxford Studies in Epistemology 1.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Sets and modality.C. Parsons - 1983 - In Charles Parsons (ed.), Mathematics in philosophy: selected essays. Ithaca, N.Y.: Cornell University Press. pp. 298--341.
    Download  
     
    Export citation  
     
    Bookmark   26 citations