Switch to: References

Citations of:

Our knowledge of mathematical objects

In Tamar Szabó Gendler & John Hawthorne (eds.), Oxford Studies in Epistemology. Oxford University Press. pp. 89-109 (2005)

Add citations

You must login to add citations.
  1. A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Sider on naturalness.Robert Williams - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Weyl and Two Kinds of Potential Domains.Laura Crosilla & Øystein Linnebo - forthcoming - Noûs.
    According to Weyl, “‘inexhaustibility’ is essential to the infinite”. However, he distinguishes two kinds of inexhaustible, or merely potential, domains: those that are “extensionally determinate” and those that are not. This article clarifies Weyl's distinction and explains its enduring logical and philosophical significance. The distinction sheds lights on the contemporary debate about potentialism, which in turn affords a deeper understanding of Weyl.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Pluralism.Edward N. Zalta - 2024 - Noûs 58 (2):306-332.
    Mathematical pluralism can take one of three forms: (1) every consistent mathematical theory consists of truths about its own domain of individuals and relations; (2) every mathematical theory, consistent or inconsistent, consists of truths about its own (possibly uninteresting) domain of individuals and relations; and (3) the principal philosophies of mathematics are each based upon an insight or truth about the nature of mathematics that can be validated. (1) includes the multiverse approach to set theory. (2) helps us to understand (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Bitcoin: A Study in Applied Metaphysics.Martin A. Lipman - 2023 - Philosophical Quarterly 73 (3):783-802.
    This essay is dedicated to the memory of Katherine Hawley.1Bitcoin was invented to serve as a digital currency that demands no trust in financial institutions, such as commercial and central banks. This paper discusses metaphysical aspects of bitcoin, in particular the view that bitcoin is socially constructed, non-concrete, and genuinely exists. If bitcoin is socially constructed, then one may worry that this reintroduces trust in the communities responsible for the social construction. Although we may have to rely on certain communities, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Groups, sets, and paradox.Eric Snyder & Stewart Shapiro - 2022 - Linguistics and Philosophy 45 (6):1277-1313.
    Perhaps the most pressing challenge for singularism—the predominant view that definite plurals like ‘the students’ singularly refer to a collective entity, such as a mereological sum or set—is that it threatens paradox. Indeed, this serves as a primary motivation for pluralism—the opposing view that definite plurals refer to multiple individuals simultaneously through the primitive relation of plural reference. Groups represent one domain in which this threat is immediate. After all, groups resemble sets in having a kind of membership-relation and iterating: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal and Hyperintensional Cognitivism and Modal and Hyperintensional Expressivism.David Elohim - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal and hyperintensional cognitivism and modal and hyperintensional expressivism. I argue that epistemic modal algebras, endowed with a hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics, comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are categorically dual. I examine five methods for modeling the dynamics of conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Models for Hylomorphism.Bruno Miguel Jacinto & Aaron Cotnoir - 2019 - Journal of Philosophical Logic 48 (5):909-955.
    In a series of papers, 137–158; 1994, Midwest Studies in Philosophy, 23, 61–74, 1999) Fine develops his hylomorphic theory of embodiments. In this article, we supply a formal semantics for this theory that is adequate to the principles laid down for it in. In Section 1, we lay out the theory of embodiments as Fine presents it. In Section 2, we argue on Cantorian grounds that the theory needs to be stabilized, and sketch some ways forward, discussing various choice points (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 65-82.
    This paper examines the philosophical significance of the consequence relation defined in the $\Omega$-logic for set-theoretic languages. I argue that, as with second-order logic, the hyperintensional profile of validity in $\Omega$-Logic enables the property to be epistemically tractable. Because of the duality between coalgebras and algebras, Boolean-valued models of set theory can be interpreted as coalgebras. In Section \textbf{2}, I demonstrate how the hyperintensional profile of $\Omega$-logical validity can be countenanced within a coalgebraic logic. Finally, in Section \textbf{3}, the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The indispensability argument and the nature of mathematical objects.Matteo Plebani - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):249-263.
    I will contrast two conceptions of the nature of mathematical objects: the conception of mathematical objects as preconceived objects, and heavy duty platonism. I will argue that friends of the indispensability argument are committed to some metaphysical theses and that one promising way to motivate such theses is to adopt heavy duty platonism. On the other hand, combining the indispensability argument with the conception of mathematical objects as preconceived objects yields an unstable position. The conclusion is that the metaphysical commitments (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against the iterative conception of set.Edward Ferrier - 2019 - Philosophical Studies 176 (10):2681-2703.
    According to the iterative conception of set, each set is a collection of sets formed prior to it. The notion of priority here plays an essential role in explanations of why contradiction-inducing sets, such as the Russell set, do not exist. Consequently, these explanations are successful only to the extent that a satisfactory priority relation is made out. I argue that attempts to do this have fallen short: understanding priority in a straightforwardly constructivist sense threatens the coherence of the empty (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic and Philosophy of Mathematics in the Early Husserl - By Stefania Centrone. [REVIEW]Matteo Plebani - 2011 - Dialectica 65 (3):477-482.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Modal Logic and Hyperintensional Semantics for Gödelian Intuition.David Elohim - manuscript
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the modal $\mu$-calculus. Via correspondence results between fixed point modal propositional logic and the bisimulation-invariant fragment of monadic second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logical and Epistemic Modality.David Elohim - manuscript
    This paper examines the interaction between the philosophy and psychology of concepts and the modal characterization of the deductive concept of logical validity. The concept of logical consequence on which I focus is model-theoretic, where the concept records the property of necessary truth-preservation from the premise of an argument to its conclusion, as well as the condition that, in the class of all possible worlds in which a premise is true, a consequent formula or succedent class of formulas is true, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a Neo‐Aristotelian Mereology.Kathrin Koslicki - 2007 - Dialectica 61 (1):127-159.
    This paper provides a detailed examination of Kit Fine’s sizeable contribution to the development of a neo‐Aristotelian alternative to standard mereology; I focus especially on the theory of ‘rigid’ and ‘variable embodiments’, as defended in Fine 1999. Section 2 briefly describes the system I call ‘standard mereology’. Section 3 lays out some of the main principles and consequences of Aristotle’s own mereology, in order to be able to compare Fine’s system with its historical precursor. Section 4 gives an exposition of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantifier Variance and Indefinite Extensibility.Jared Warren - 2017 - Philosophical Review 126 (1):81-122.
    This essay clarifies quantifier variance and uses it to provide a theory of indefinite extensibility that I call the variance theory of indefinite extensibility. The indefinite extensibility response to the set-theoretic paradoxes sees each argument for paradox as a demonstration that we have come to a different and more expansive understanding of ‘all sets’. But indefinite extensibility is philosophically puzzling: extant accounts are either metasemantically suspect in requiring mysterious mechanisms of domain expansion, or metaphysically suspect in requiring nonstandard assumptions about (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Iterative Conception of Set: a (Bi-)Modal Axiomatisation.J. P. Studd - 2013 - Journal of Philosophical Logic 42 (5):1-29.
    The use of tensed language and the metaphor of set ‘formation’ found in informal descriptions of the iterative conception of set are seldom taken at all seriously. Both are eliminated in the nonmodal stage theories that formalise this account. To avoid the paradoxes, such accounts deny the Maximality thesis, the compelling thesis that any sets can form a set. This paper seeks to save the Maximality thesis by taking the tense more seriously than has been customary (although not literally). A (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • The Epistemology of Essence.Tuomas Tahko - 2018 - In Alexander Carruth, Sophie C. Gibb & John Heil (eds.), Ontology, Modality, and Mind: Themes From the Metaphysics of E. J. Lowe. Oxford, United Kingdom: Oxford University Press. pp. 93-110.
    The epistemology of essence is a topic that has received relatively little attention, although there are signs that this is changing. The lack of literature engaging directly with the topic is probably partly due to the mystery surrounding the notion of essence itself, and partly due to the sheer difficulty of developing a plausible epistemology. The need for such an account is clear especially for those, like E.J. Lowe, who are committed to a broadly Aristotelian conception of essence, whereby essence (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Bad company tamed.Øystein Linnebo - 2009 - Synthese 170 (3):371 - 391.
    The neo-Fregean project of basing mathematics on abstraction principles faces “the bad company problem,” namely that a great variety of unacceptable abstraction principles are mixed in among the acceptable ones. In this paper I propose a new solution to the problem, based on the idea that individuation must take the form of a well-founded process. A surprising aspect of this solution is that every form of abstraction on concepts is permissible and that paradox is instead avoided by restricting what concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Sosein as Subject Matter.Matteo Plebani - 2018 - Australasian Journal of Logic 15 (2):77-94.
    Meinongians in general, and Routley in particular, subscribe to the principle of the independence of Sosein from Sein. In this paper, I put forward an interpretation of the independence principle that philosophers working outside the Meinongian tradition can accept. Drawing on recent work by Stephen Yablo and others on the notion of subject matter, I offer a new account of the notion of Sosein as a subject matter and argue that in some cases Sosein might be independent from Sein. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Hard Question for Hylomorphism.Dana Goswick - 2018 - Metaphysics 1 (1):52-62.
    The view that ordinary objects are composites of form and matter ("hylomorphism") can be contrasted with the more common view that ordinary objects are composed of only material parts ("matter only"). On a matter-only view the hard question is modal: which modal profile does that (statue-shaped) object have? Does it have the modal profile of a statue, a lump, a mere aggregate? On a hylomorphic view the hard question is ontological: which objects exist? Does a statue (matter-m + statue-form), a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • To bridge Gödel’s gap.Eileen S. Nutting - 2016 - Philosophical Studies 173 (8):2133-2150.
    In “Mathematical Truth,” Paul Benacerraf raises an epistemic challenge for mathematical platonists. In this paper, I examine the assumptions that motivate Benacerraf’s original challenge, and use them to construct a new causal challenge for the epistemology of mathematics. This new challenge, which I call ‘Gödel’s Gap’, appeals to intuitive insights into mathematical knowledge. Though it is a causal challenge, it does not rely on any obviously objectionable constraints on knowledge. As a result, it is more compelling than the original challenge. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Cognitivism about Epistemic Modality.David Elohim - manuscript
    This paper aims to vindicate the thesis that cognitive computational properties are abstract objects implemented in physical systems. I avail of the equivalence relations countenanced in Homotopy Type Theory, in order to specify an abstraction principle for epistemic intensions. The homotopic abstraction principle for epistemic intensions provides an epistemic conduit into our knowledge of intensions as abstract objects. I examine, then, how intensional functions in Epistemic Modal Algebra are deployed as core models in the philosophy of mind, Bayesian perceptual psychology, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Separating the Theological Sheep from the Philosophical Goats.Jonathan Curtis Rutledge - 2021 - Journal of Analytic Theology 9:205-222.
    Andrew Torrance has recently argued that we can distinguish analytic theology from analytic philosophy of religion if we understand theology as, fundamentally, a scientific enterprise. However, this distinction holds only if philosophy of religion is not itself a science in the sense intended by Torrance. I argue that philosophy of religion is a science in this sense, and so, that Torrance cannot distinguish theology from philosophy of religion in the way suggested. Nevertheless, I offer two alternative routes to the distinction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unrestricted Quantification.Salvatore Florio - 2014 - Philosophy Compass 9 (7):441-454.
    Semantic interpretations of both natural and formal languages are usually taken to involve the specification of a domain of entities with respect to which the sentences of the language are to be evaluated. A question that has received much attention of late is whether there is unrestricted quantification, quantification over a domain comprising absolutely everything there is. Is there a discourse or inquiry that has absolute generality? After framing the debate, this article provides an overview of the main arguments for (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Bi-Modal Naive Set Theory.John Wigglesworth - 2018 - Australasian Journal of Logic 15 (2):139-150.
    This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members. A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators. We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity. We also show that the theory is consistent by providing an S5 Kripke model. The paper concludes with some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal Cognitivism and Modal Expressivism.David Elohim - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal cognitivism and modal expressivism. I argue that epistemic modal algebras comprise a materially adequate fragment of the language of thought, and endeavor to show how such algebras provide the resources necessary to resolve Russell's paradox of propositions. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are dually isomorphic. I examine, in particular, the virtues (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Cognitivism and Modal Expressivism.Hasen Khudairi - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal cognitivism and modal expressivism. I argue that epistemic modal algebras comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are dual. I examine, in particular, the virtues unique to the modal expressivist approach here proffered in the setting of the foundations of mathematics, by contrast (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Solving Prior’s Problem with a Priorean Tool.Martin Pleitz - 2016 - Synthese 193 (11):3567-3577.
    I will show how a metaphysical problem of Arthur Prior’s can be solved by a logical tool he developed himself, but did not put to any foundational use: metric logic. The broader context is given by the key question about the metaphysics of time: Is time tenseless, i.e., is time just a structure of instants; or is time tensed, because some facts are irreducibly tensed? I take sides with Prior and the tensed theory. Like him, I therefore I have to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Honest Toil or Sheer Magic?Alan Weir - 2007 - Dialectica 61 (1):89-115.
    In this article I discuss the 'procedural postulationist' view of mathematics advanced by Kit Fine in a recent paper. I argue that he has not shown that this view provides an avenue to knowledge of mathematical truths, at least if such truths are objective truths. In particular, more needs to be said about the criteria which constrain which types of entities can be postulated. I also argue that his reliance on second-order quantification means that his background logic is not free (...)
    Download  
     
    Export citation  
     
    Bookmark