8 found
Order:
  1. The Significance of Evidence-Based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences.Bhupinder Singh Anand - 2020 - Mumbai: DBA Publishing (First Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  87
    Do Goedel's Incompleteness Theorems Set Absolute Limits on the Ability of the Brain to Express and Communicate Mental Concepts Verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  41
    An Elementary, Pre-Formal, Proof of FLT: Why is X^N+y^N=Z^N Solvable Only for N≪3?Bhupinder Singh Anand - manuscript
    Andrew Wiles' analytic proof of Fermat's Last Theorem FLT, which appeals to geometrical properties of real and complex numbers, leaves two questions unanswered: (i) What technique might Fermat have used that led him to, even if only briefly, believe he had `a truly marvellous demonstration' of FLT? (ii) Why is x^n+y^n=z^n solvable only for n<3? In this inter-disciplinary perspective, we offer insight into, and answers to, both queries; yielding a pre-formal proof of why FLT can be treated as a true (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Are the Barriers That Inhibit Mathematical Models of a Cyclic Universe, Which Admits Broken Symmetries, Dark Energy, and an Expanding Multiverse, Illusory?Bhupinder Singh Anand - manuscript
    We argue the thesis that if (1) a physical process is mathematically representable by a Cauchy sequence; and (2) we accept that there can be no infinite processes, i.e., nothing corresponding to infinite sequences, in natural phenomena; then (a) in the absence of an extraneous, evidence-based, proof of `closure' which determines the behaviour of the physical process in the limit as corresponding to a `Cauchy' limit; (b) the physical process must tend to a discontinuity (singularity) which has not been reflected (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  17
    A Pre-Formal Proof of Why No Planar Map Needs More Than Four Colours.Bhupinder Singh Anand - manuscript
    Although the Four Colour Theorem is passe, we give an elementary pre-formal proof that transparently illustrates why four colours suffice to chromatically differentiate any set of contiguous, simply connected and bounded, planar spaces; by showing that there is no minimal 4-coloured planar map M. We note that such a pre-formal proof of the Four Colour Theorem highlights the significance of differentiating between: (a) Plato's knowledge as justified true belief, which seeks a formal proof in a first-order mathematical language in order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Three Dogmas of First-Order Logic and Some Evidence-Based Consequences for Constructive Mathematics of Differentiating Between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  47
    Why Did Fermat Believe He Had `a Truly Marvellous Demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves two (...)
    Download  
     
    Export citation  
     
    Bookmark