Results for 'Birth Weight, ANN, Predictive Model'

941 found
Order:
  1. Predicting Birth Weight Using Artificial Neural Network.Mohammed Al-Shawwa & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):9-14.
    In this research, an Artificial Neural Network (ANN) model was developed and tested to predict Birth Weight. A number of factors were identified that may affect birth weight. Factors such as smoke, race, age, weight (lbs) at last menstrual period, hypertension, uterine irritability, number of physician visits in 1st trimester, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some (...) cases in hospitals. The evaluation of testing the dataset shows that the ANN model is capable of correctly predicting the birth weight with 100% accuracy. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Low Birth Weight Prediction Using JNN.Osama Salah El-Din Al-Madhoun, Afnan Omar Abu Hasira, Soha Ahmed Hegazy & Samy S. Abu-Naser - 2020 - International Journal of Academic Health and Medical Research (IJAHMR) 4 (11):8-14.
    Abstract: In this research, an Artificial Neural Network (ANN) model was developed and tested to predict Birth Weight. A number of factors were identified that may affect birth weight. Factors such as smoke, race, age, weight (lbs) at last menstrual period, hypertension, uterine irritability, number of physician visits in 1st trimester, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. ANN for Predicting Birth Weight.Shawwah Mohammad & Murshidy Suheil - 2020 - International Journal of Academic Health and Medical Research (IJAHMR) 1 (3):9-12.
    In this research, an Artificial Neural Network (ANN) model was developed and tested to predict Birth Weight. A number of factors were identified that may affect birth weight. Factors such as smoke, race, age, weight (lbs) at last menstrual period, hypertension, uterine irritability, number of physician visits in 1st trimester, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some (...) cases in hospitals. The evaluation of testing the dataset shows that the ANN model is capable of correctly predicting the birth weight with 100% accuracy. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  4. ANN Car Mileage per Gallon Prediction.Jomana Ahmed, Bayan Harb, Bassem S. Abu, Mohsen Afana & Rafiq Madhoun - 2017 - International Journal of Advanced Science and Technology 124:51-58.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Predicting Car Mileage per Gallon.Mohsen Afana, Jomana Ahmed, Bayan Harb, Basem Nasser & Rafiq Madhoun - 2015 - International Journal of Advanced Science and Technology 124 (124):51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Measuring the World: Olfaction as a Process Model of Perception.Ann-Sophie Barwich - 2018 - In Daniel J. Nicholson & John Dupré (eds.), Everything Flows: Towards a Processual Philosophy of Biology. Oxford, United Kingdom: Oxford University Press. pp. 337-356.
    How much does stimulus input shape perception? The common-sense view is that our perceptions are representations of objects and their features and that the stimulus structures the perceptual object. The problem for this view concerns perceptual biases as responsible for distortions and the subjectivity of perceptual experience. These biases are increasingly studied as constitutive factors of brain processes in recent neuroscience. In neural network models the brain is said to cope with the plethora of sensory information by predicting stimulus regularities (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Development of Keyword Trend Prediction Models for Obesity Before and After the COVID-19 Pandemic Using RNN and LSTM: Analyzing the News Big Data of South Korea.Gayeong Eom & Haewon Byeon - 2022 - Frontiers in Public Health 10:894266.
    The Korea National Health and Nutrition Examination Survey (2020) reported that the prevalence of obesity (≥19 years old) was 31.4% in 2011, but it increased to 33.8% in 2019 and 38.3% in 2020, which confirmed that it increased rapidly after the outbreak of COVID-19. Obesity increases not only the risk of infection with COVID-19 but also severity and fatality rate after being infected with COVID-19 compared to people with normal weight or underweight. Therefore, identifying the difference in potential factors for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Predicting urban Heat Island in European cities: A comparative study of GRU, DNN, and ANN models using urban morphological variables.Alireza Attarhay Tehrani, Omid Veisi, Kambiz Kia, Yasin Delavar, Sasan Bahrami, Saeideh Sobhaninia & Asma Mehan - 2024 - Urban Climate 56 (102061):1-27.
    Continued urbanization, along with anthropogenic global warming, has and will increase land surface temperature and air temperature anomalies in urban areas when compared to their rural surroundings, leading to Urban Heat Islands (UHI). UHI poses environmental and health risks, affecting both psychological and physiological aspects of human health. Thus, using a deep learning approach that considers morphological variables, this study predicts UHI intensity in 69 European cities from 2007 to 2021 and projects UHI impacts for 2050 and 2080. The research (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Distance education students’ indulgence in six sharp practices: General linear modelling of predictive parameters.Valentine Joseph Owan, Onyinye Chuktu, Ann E. Dijeh, Abderrazak Zaafour, Julius U. Ukah, Margaret U. Chukwurah, Denis A. Ube, Michael Ekpenyong Asuquo, Uwase Uwase Esuong, Udida Joseph Udida & Cyprian Oba Ojong - 2023 - Turkish Online Journal of Distance Education 24 (3):71-92.
    This study examined the degree to which students indulge in six prominent misconducts in Distance Education Institutions (DEIs). The study also quantified how class size, instructional delivery and institutional policies predict students’ indulgence in sharp practices using a general linear modelling approach. A sample of 871 participants was drawn from 1,742 final-year students across two DEIs in Nigeria. A structured questionnaire was used for data collection. The questionnaire had acceptable psychometric estimates of dimensionality, content and construct validity, as well as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. ANN for Predicting Temperature and Humidity in the Surrounding Environment.Abd Al-Rahman Shawwa, Saji Al-Absi, Khaled Hassanein & Bastami Bashhar - 2017 - International Journal of Academic Pedagogical Research (IJAPR) 9 (2):1-5.
    Abstract: In this research, an Artificial Neural Network (ANN) model was developed and tested to predict temperature in the surrounding environment. A number of factors were identified that may affect temperature or humidity. Factors such as the nature of the surrounding place, proximity or distance from water surfaces, the influence of vegetation, and the level of rise or fall below sea level, among others, as input variables for the ANN model. A model based on multi-layer concept topology (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. ANN for Predicting Medical Expenses.Khaled Salah & Ahmed Altalla - 2016 - International Journal of Engineering and Information Systems (IJEAIS) 2 (10):11-16.
    Abstract: In this research, the Artificial Neural Network (ANN) model was developed and tested to predict the rate of treatment expenditure on an individual or family in a country. A number of factors have been identified that may affect treatment expenses. Factors such as age, grade level such as primary, preparatory, secondary or college, sex, size of disability, social status, and annual medical expenses in fixed dollars excluding dental and outpatient clinics among others, as input variables for the ANN (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Prediction Heart Attack using Artificial Neural Networks (ANN).Ibrahim Younis, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):36-41.
    Abstract Heart Attack is the Cardiovascular Disease (CVD) which causes the most deaths among CVDs. We collected a dataset from Kaggle website. In this paper, we propose an ANN model for the predicting whether a patient has a heart attack or not that. The dataset set consists of 9 features with 1000 samples. We split the dataset into training, validation, and testing. After training and validating the proposed model, we tested it with testing dataset. The proposed model (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Artificial Neural Network for Forecasting Car Mileage per Gallon in the City.Mohsen Afana, Jomana Ahmed, Bayan Harb, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 124:51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  14. Artificial Neural Network for Predicting COVID 19 Using JNN.Walaa Hasan, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):41-47.
    Abstract: The emergence of the novel coronavirus (COVID-19) in 2019 has presented the world with an unprecedented global health crisis. The rapid and widespread transmission of the virus has strained healthcare systems, disrupted economies, and challenged societies. In response to this monumental challenge, the intersection of technology and healthcare has become a focal point for innovation. This research endeavors to leverage the capabilities of Artificial Neural Networks (ANNs) to develop an advanced predictive model for forecasting the spread of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. ANN for English Alphabet Prediction.Hamza H. Heriz, Sharief M. Salah, Mohammad Abu Abdu & Qassas Randa - 2016 - International Journal of Academic Pedagogical Research (IJAPR) 11 (2):8-13.
    Abstract: In this paper an Artificial Neural Network (ANN) model, for predicting the Letters from twenty dissimilar fonts for each letter. The character images were, initially, based on twenty dissimilar fonts and each letter inside these twenty fonts was arbitrarily distorted to yield a file of 20,000 distinctive stimuli. Every stimulus was transformed into 16 simple numerical attributes (arithmetical moments and edge amounts) which were then ascended to be suitable into a range of numeral values from 0 to 15. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. ANN for Predicting Antibiotic Susceptibility.Maaruf Ahmed & Qassas Randa - 2016 - International Journal of Academic Pedagogical Research (IJAPR) 10 (2):1-4.
    Abstract: In this research, an Artificial Neural Network (ANN) model was developed and tested to predict efficiency of antibiotics in treating various bacteria types. Attributes that were taken in account are: organism name, specimen type, and antibiotic name as input and susceptibility as an output. A model based on one input, one hidden, and one output layers concept topology was developed and trained using a data from Queensland government's website. The evaluation shows that the ANN model is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Predicting Tumor Category Using Artificial Neural Networks.Ibrahim M. Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (2):1-7.
    In this paper an Artificial Neural Network (ANN) model, for predicting the category of a tumor was developed and tested. Taking patients’ tests, a number of information gained that influence the classification of the tumor. Such information as age, sex, histologic-type, degree-of-diffe, status of bone, bone-marrow, lung, pleura, peritoneum, liver, brain, skin, neck, supraclavicular, axillar, mediastinum, and abdominal. They were used as input variables for the ANN model. A model based on the Multilayer Perceptron Topology was established (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  18. Effect of Oxygen Consumption of Thylakoid Membranes (Chloroplasts) From Spinach after Inhibition Using JNN.Hisham Ziad Belbeisi, Youssef Samir Al-Awadi, Muhammad Munir Abbas & Samy S. Abu-Naser - 2020 - International Journal of Academic Health and Medical Research (IJAHMR) 4 (11):1-7.
    Abstract: In this research, an Artificial Neural Network (ANN) model was developed and tested to predict effect of oxygen consumption of thylakoid membranes (chloroplasts) from spinach after inhibition. A number of factors were identified that may affect of oxygen consumption of thylakoid membranes from spinach. Factors such as curve, herbicide, dose, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some inhibition of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  19. Machine Learning-Based Diabetes Prediction: Feature Analysis and Model Assessment.Fares Wael Al-Gharabawi & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):10-17.
    This study employs machine learning to predict diabetes using a Kaggle dataset with 13 features. Our three-layer model achieves an accuracy of 98.73% and an average error of 0.01%. Feature analysis identifies Age, Gender, Polyuria, Polydipsia, Visual blurring, sudden weight loss, partial paresis, delayed healing, irritability, Muscle stiffness, Alopecia, Genital thrush, Weakness, and Obesity as influential predictors. These findings have clinical significance for early diabetes risk assessment. While our research addresses gaps in the field, further work is needed to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Diabetes Prediction Using Artificial Neural Network.Nesreen Samer El_Jerjawi & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 121:54-64.
    Diabetes is one of the most common diseases worldwide where a cure is not found for it yet. Annually it cost a lot of money to care for people with diabetes. Thus the most important issue is the prediction to be very accurate and to use a reliable method for that. One of these methods is using artificial intelligence systems and in particular is the use of Artificial Neural Networks (ANN). So in this paper, we used artificial neural networks to (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  21. Animal Species Classification Using Just Neural Network.Donia Munther Agha - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):20-28.
    Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres to 33.6 metres. In this paper an Artificial Neural Network (ANN) model, was developed and tested to predict animal species. There are a number of features that influence the classification of animal species. Such as the existence of hair/ feather, if the animal gives (...) or spawns, it is airborne, aquatic, predator, toothed, backboned, venomous, has –fins, has-tail, cat-sized, and domestic. A model based on the Multilayer Perceptron Topology was proposed and trained, using data set what was collected from UCI Machine Learning Repository. Evaluation of the proposed model shows that the ANN model is able to correctly predict the animal category with 100% accuracy. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Forecasting COVID-19 cases Using ANN.Ibrahim Sufyan Al-Baghdadi & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):22-31.
    Abstract: The COVID-19 pandemic has posed unprecedented challenges to global healthcare systems, necessitating accurate and timely forecasting of cases for effective mitigation strategies. In this research paper, we present a novel approach to predict COVID-19 cases using Artificial Neural Networks (ANNs), harnessing the power of machine learning for epidemiological forecasting. Our ANNs-based forecasting model has demonstrated remarkable efficacy, achieving an impressive accuracy rate of 97.87%. This achievement underscores the potential of ANNs in providing precise and data-driven insights into the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Neural Network-Based Audit Risk Prediction: A Comprehensive Study.Saif al-Din Yusuf Al-Hayik & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):43-51.
    Abstract: This research focuses on utilizing Artificial Neural Networks (ANNs) to predict Audit Risk accurately, a critical aspect of ensuring financial system integrity and preventing fraud. Our dataset, gathered from Kaggle, comprises 18 diverse features, including financial and historical parameters, offering a comprehensive view of audit-related factors. These features encompass 'Sector_score,' 'PARA_A,' 'SCORE_A,' 'PARA_B,' 'SCORE_B,' 'TOTAL,' 'numbers,' 'marks,' 'Money_Value,' 'District,' 'Loss,' 'Loss_SCORE,' 'History,' 'History_score,' 'score,' and 'Risk,' with a total of 774 samples. Our proposed neural network architecture, consisting of three (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Chances of Survival in the Titanic using ANN.Udai Hamed Saeed Al-Hayik & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):17-21.
    Abstract: The sinking of the RMS Titanic in 1912 remains a poignant historical event that continues to captivate our collective imagination. In this research paper, we delve into the realm of data-driven analysis by applying Artificial Neural Networks (ANNs) to predict the chances of survival for passengers aboard the Titanic. Our study leverages a comprehensive dataset encompassing passenger information, demographics, and cabin class, providing a unique opportunity to explore the complex interplay of factors influencing survival outcomes. Our ANN-based predictive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. ANN for Diagnosing Hepatitis Virus.Fathi Metwally, Khaled AbuSharekh & Bastami Bashhar - 2017 - International Journal of Academic Pedagogical Research (IJAPR) 11 (2):1-6.
    Abstract: This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. A number of factors that may possibly influence the performance of patients were outlined. Such factors as age, sex, Steroid, Antivirals, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm Splean Palpable, Spiders, Ascites, Varices, Bilirubin, Alk Phosphate, SGOT, Albumin, Protine and Histology, were then used as input variables for the ANN model . Test data evaluation shows that the ANN model is able to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Leveraging Artificial Neural Networks for Cancer Prediction: A Synthetic Dataset Approach.Mohammed S. Abu Nasser & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (11):43-51.
    Abstract: This research explores the application of artificial neural networks (ANNs) in predicting cancer using a synthetically generated dataset designed for research purposes. The dataset comprises 10,000 pseudo-patient records, each characterized by gender, age, smoking history, fatigue, and allergy status, along with a binary indicator for the presence or absence of cancer. The 'Gender,' 'Smoking,' 'Fatigue,' and 'Allergy' attributes are binary, while 'Age' spans a range from 18 to 100 years. The study employs a three-layer ANN architecture to develop a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Predicting Whether a Couple is Going to Get Divorced or Not Using Artificial Neural Networks.Ibrahim M. Nasser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (10):49-55.
    In this paper, an artificial neural network (ANN) model was developed and validated to predict whether a couple is going to get divorced or not. Prediction is done based on some questions that the couple answered, answers of those questions were used as the input to the ANN. The model went through multiple learning-validation cycles until it got 100% accuracy.
    Download  
     
    Export citation  
     
    Bookmark  
  28. Modelling competing legal arguments using Bayesian model comparison and averaging.Martin Neil, Norman Fenton, David Lagnado & Richard David Gill - 2019 - Artificial Intelligence and Law 27 (4):403-430.
    Bayesian models of legal arguments generally aim to produce a single integrated model, combining each of the legal arguments under consideration. This combined approach implicitly assumes that variables and their relationships can be represented without any contradiction or misalignment, and in a way that makes sense with respect to the competing argument narratives. This paper describes a novel approach to compare and ‘average’ Bayesian models of legal arguments that have been built independently and with no attempt to make them (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  29. Predicting Life Expectancy in Diverse Countries Using Neural Networks: Insights and Implications.Alaa Mohammed Dawoud & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):45-54.
    Life expectancy prediction, a pivotal facet of public health and policy formulation, has witnessed remarkable advancements owing to the integration of neural network models and comprehensive datasets. In this research, we present an innovative approach to forecasting life expectancy in diverse countries. Leveraging a neural network architecture, our model was trained on a dataset comprising 22 distinct features, acquired from Kaggle, and encompassing key health indicators, socioeconomic metrics, and cultural attributes. The model demonstrated exceptional predictive accuracy, attaining (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Breast Cancer Diagnosis and Survival Prediction Using JNN.Mohammed Ziyad Abu Shawarib, Ahmed Essam Abdel Latif, Bashir Essam El-Din Al-Zatmah & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (10):23-30.
    Abstract: Breast cancer is reported to be the most common cancer type among women worldwide and it is the second highest women fatality rate amongst all cancer types. Notwithstanding all the progresses made in prevention and early intervention, early prognosis and survival prediction rates are still not sufficient. In this paper, we propose an ANN model which outperforms all the previous supervised learning methods by reaching 99.57 in terms of accuracy in Wisconsin Breast Cancer dataset. Experimental results on Haberman’s (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  31. Unlocking Literary Insights: Predicting Book Ratings with Neural Networks.Mahmoud Harara & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):22-27.
    Abstract: This research delves into the utilization of Artificial Neural Networks (ANNs) as a powerful tool for predicting the overall ratings of books by leveraging a diverse set of attributes. To achieve this, we employ a comprehensive dataset sourced from Goodreads, enabling us to thoroughly examine the intricate connections between the different attributes of books and the ratings they receive from readers. In our investigation, we meticulously scrutinize how attributes such as genre, author, page count, publication year, and reader reviews (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Google Stock Price Prediction Using Just Neural Network.Mohammed Mkhaimar AbuSada, Ahmed Mohammed Ulian & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):10-16.
    Abstract: The aim behind analyzing Google Stock Prices dataset is to get a fair idea about the relationships between the multiple attributes a day might have, such as: the opening price for each day, the volume of trading for each day. With over a hundred thousand days of trading data, there are some patterns that can help in predicting the future prices. We proposed an Artificial Neural Network (ANN) model for predicting the closing prices for future days. The prediction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Machine Learning Application to Predict The Quality of Watermelon Using JustNN.Ibrahim M. Nasser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (10):1-8.
    In this paper, a predictive artificial neural network (ANN) model was developed and validated for the purpose of prediction whether a watermelon is good or bad, the model was developed using JUSTNN software environment. Prediction is done based on some watermelon attributes that are chosen to be input data to the ANN. Attributes like color, density, sugar rate, and some others. The model went through multiple learning-validation cycles until the error is zero, so the model (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Predictive Modeling of Obesity and Cardiovascular Disease Risk: A Random Forest Approach.Mohammed S. Abu Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 7 (12):26-38.
    Abstract: This research employs a Random Forest classification model to predict and assess obesity and cardiovascular disease (CVD) risk based on a comprehensive dataset collected from individuals in Mexico, Peru, and Colombia. The dataset comprises 17 attributes, including information on eating habits, physical condition, gender, age, height, and weight. The study focuses on classifying individuals into different health risk categories using machine learning algorithms. Our Random Forest model achieved remarkable performance with an accuracy, F1-score, recall, and precision all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Artificial Neural Network for Predicting Car Performance Using JNN.Awni Ahmed Al-Mobayed, Youssef Mahmoud Al-Madhoun, Mohammed Nasser Al-Shuwaikh & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (9):139-145.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Buying, Maint, Doors, Persons, Lug_boot, Safety, and Overall. ANN was used in forecasting car acceptability. The results showed that ANN model was able to predict the car acceptability with 99.12 %. The factor of Safety has the most influence on car acceptability evaluation. Comparative study (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  36. Sonopelvimetry: An Innovative Method for Early Prediction of Obstructed Labour.Yinon Gilboa - 2014 - Open Journal of Obstetrics and Gynecology 4:757-765.
    To evaluate an innovative sonopelvimetry method for early prediction of obstructed labour. Methods: A prospective study was conducted in two centers.GPS-based sonopelvimetry, laborProTM (Trig Medical Inc., Yoqneam Ilit, Israel) devise, was used prior to labour in nulliparous women at 39 - 42 weeks gestation remote from labor. Maternal pelvic parameters, including inter-iliac transverse diameter, obstetric conjugate and interspinous diameter were evaluated. Fetal parameters included head station, biparietal diameter and occipitofrontal diameter. Data on delivery and outcome were collected from the electronic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Climate Change temperature Prediction Using Just Neural Network.Saja Kh Abu Safiah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):35-45.
    Climate change temperature prediction plays a crucial role in effective environmental planning. This study introduces an innovative approach that harnesses the power of Artificial Neural Networks (ANNs) within the Just Neural Network (JustNN) framework to enhance temperature forecasting in the context of climate change. By leveraging historical climate data, our model achieves exceptional accuracy, redefining the landscape of temperature prediction without intricate preprocessing. This model sets a new standard for precise temperature forecasting in the context of climate change. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Books’ Rating Prediction Using Just Neural Network.Alaa Mazen Maghari, Iman Ali Al-Najjar, Said Jamil Al-Laqtah & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (10):17-22.
    Abstract: The aim behind analyzing the Goodreads dataset is to get a fair idea about the relationships between the multiple attributes a book might have, such as: the aggregate rating of each book, the trend of the authors over the years and books with numerous languages. With over a hundred thousand ratings, there are books which just tend to become popular as each day seems to pass. We proposed an Artificial Neural Network (ANN) model for predicting the overall rating (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Predictive Modeling of Breast Cancer Diagnosis Using Neural Networks:A Kaggle Dataset Analysis.Anas Bachir Abu Sultan & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):1-9.
    Breast cancer remains a significant health concern worldwide, necessitating the development of effective diagnostic tools. In this study, we employ a neural network-based approach to analyze the Wisconsin Breast Cancer dataset, sourced from Kaggle, comprising 570 samples and 30 features. Our proposed model features six layers (1 input, 1 hidden, 1 output), and through rigorous training and validation, we achieve a remarkable accuracy rate of 99.57% and an average error of 0.000170 as shown in the image below. Furthermore, our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Forecasting Stock Prices using Artificial Neural Network.Ahmed Munther Abdel Hadi & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):42-50.
    Abstract: Accurate stock price prediction is essential for informed investment decisions and financial planning. In this research, we introduce an innovative approach to forecast stock prices using an Artificial Neural Network (ANN). Our dataset, consisting of 5582 samples and 6 features, including historical price data and technical indicators, was sourced from Yahoo Finance. The proposed ANN model, composed of four layers (1 input, 1 hidden, 1 output), underwent rigorous training and validation, yielding remarkable results with an accuracy of 99.84% (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. IS THERE A LINK BETWEEN POLLUTION AND HEALTH?Silvia Kuswandari - 2020
    Based on data from densely populated counties, this article assesses the effects of air pollution on newborn death rates. Unlike earlier studies in this field, these figures are based on a well-defined behavioral model of health production that was calculated using suitable simultaneous equations techniques. The findings show that sulfur dioxide is the most important air contaminant in terms of infant survival. There is additional evidence that a rise in sulfur dioxide affects the newborn death rate by increasing the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Conflicts and Birth Weight.Hang Khanh, My Nguyen, Thuy Trang, Khoi Duc, Kien Le & Huong T. T. Hoang - 2016
    This pаpеr invеstigаtеs thе hiddеn yеt pеrsistеnt cоst оf cоnflict tо birth wеight оutcоmеs fоr 53 dеvеlоping cоuntriеs еxpеriеncing cоnflict in thе pаst thrее dеcаdеs (1990-2018). Explоiting thе vаriаtiоn аcrоss districts аnd cоncеptiоn mоnths-yеаrs, wе find thаt intrаutеrinе еxpоsurе tо аrmеd cоnflict in thе first trimеstеr оf prеgnаncy rеducеs child’s wеight аt birth by 2.8% аnd rаisеs thе incidеncе оf lоw birth wеight by 3.2 pеrcеntаgе pоints. Infаnts bоrn tо pооr аnd lоw еducаtеd mоthеrs аrе еspеciаlly vulnеrаblе (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  43. Is Captain Kirk a natural blonde? Do X-ray crystallographers dream of electron clouds? Comparing model-based inferences in science with fiction.Ann-Sophie Barwich - 2017 - In Otávio Bueno, Steven French, George Darby & Dean Rickles (eds.), Thinking About Science, Reflecting on Art: Bringing Aesthetics and Philosophy of Science Together. New York: Routledge.
    Scientific models share one central characteristic with fiction: their relation to the physical world is ambiguous. It is often unclear whether an element in a model represents something in the world or presents an artifact of model building. Fiction, too, can resemble our world to varying degrees. However, we assign a different epistemic function to scientific representations. As artifacts of human activity, how are scientific representations allowing us to make inferences about real phenomena? In reply to this concern, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Comparing Artificial Neural Networks with Multiple Linear Regression for Forecasting Heavy Metal Content.Rachid El Chaal & Moulay Othman Aboutafail - 2022 - Acadlore Transactions on Geosciences 1 (1):2-11.
    This paper adopts two modeling tools, namely, multiple linear regression (MLR) and artificial neural networks (ANNs), to predict the concentrations of heavy metals (zinc, boron, and manganese) in surface waters of the Oued Inaouen watershed flowing towards Inaouen, using a set of physical-chemical parameters. XLStat was employed to perform multiple linear and nonlinear regressions, and Statista 10 was chosen to construct neural networks for modeling and prediction. The effectiveness of the ANN- and MLR-based stochastic models was assessed by the determination (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. A Comparative Analysis of Data Mining Techniques on Breast Cancer Diagnosis Data using WEKA Toolbox.Majdah Alshammari & Mohammad Mezher - 2020 - (IJACSA) International Journal of Advanced Computer Science and Applications 8:224-229.
    Abstract—Breast cancer is considered the second most common cancer in women compared to all other cancers. It is fatal in less than half of all cases and is the main cause of mortality in women. It accounts for 16% of all cancer mortalities worldwide. Early diagnosis of breast cancer increases the chance of recovery. Data mining techniques can be utilized in the early diagnosis of breast cancer. In this paper, an academic experimental breast cancer dataset is used to perform a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. When are Purely Predictive Models Best?Robert Northcott - 2017 - Disputatio 9 (47):631-656.
    Can purely predictive models be useful in investigating causal systems? I argue ‘yes’. Moreover, in many cases not only are they useful, they are essential. The alternative is to stick to models or mechanisms drawn from well-understood theory. But a necessary condition for explanation is empirical success, and in many cases in social and field sciences such success can only be achieved by purely predictive models, not by ones drawn from theory. Alas, the attempt to use theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  47. Going in, moral, circles: A data-driven exploration of moral circle predictors and prediction models.Hyemin Han & Marja Graham - manuscript
    Moral circles help define the boundaries of one’s moral consideration. One’s moral circle may provide insight into how one perceives or treats other entities. A data-driven model exploration was conducted to explore predictors and prediction models. Candidate predictors were built upon past research using moral foundations and political orientation. Moreover, we also employed additional moral psychological indicators, i.e., moral reasoning, moral identity, and empathy, based on prior research in moral development and education. We used model exploration methods, i.e., (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Does Temperature Shocks Affect Birth Weight in Vietnam?My Nguyen, Kien Le, Huong T. T. Hoang, Hang Khanh, Khoi Duc & Thuy Trang - 2017
    This pаpеr invеstigаtеs thе еxtеnt tо which in-utеrо еxpоsurе tо tеmpеrаturе shоcks аffеcts birth wеight оutcоmеs in Viеtnаm. Еxplоiting thе vаriаtiоns аcrоss districts аnd cоncеptiоn timing within districts, wе shоw thаt а оnе stаndаrd dеviаtiоn incrеаsе in tеmpеrаturе rеlаtivе tо thе lоcаl nоrm (аpprоximаtеly 0.52 dеgrее Cеlsius) during thе first trimеstеr оf prеgnаncy rеducеs thе child’s wеight аt birth by 67 grаms оr 2.2%. Оur hеtеrоgеnеity аnаlysis suggеsts thаt infаnts living in rurаl аrеаs, bоrn tо pооr аnd lоw-еducаtеd (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  49. Does Rainfall Affect Birth Weight in Vietnam?Huong T. T. Hoang, Kien Le, Thuy Trang, Hang Khanh, My Nguyen & Khoi Duc - 2017
    This pаpеr invеstigаtеs thе lеss discеrniblе cоst оf rаinfаll shоcks tо birth wеight оutcоmеs within thе cоntеxt оf Viеtnаm. Еxplоiting thе vаriаtiоn аcrоss districts аnd cоncеptiоn mоnths-yеаrs, wе shоw thаt in-utеrо еxpоsurе tо еxcеssivе аnd dеficiеnt rаinfаll shоcks in thе sеcоnd trimеstеr оf prеgnаncy rеducеs child’s wеight аt birth by 3.5 аnd 3.1%, rеspеctivеly. Bеsidеs, infаnts bоrn tо pооr, rurаl, аnd lоw еducаtеd mоthеrs аrе еspеciаlly vulnеrаblе tо thе аdvеrsе rеpеrcussiоns оf rаinfаll shоcks. Sincе pооr infаnt hеаlth cаn (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  50.  92
    Interpretable and accurate prediction models for metagenomics data.Edi Prifti, Antoine Danchin, Jean-Daniel Zucker & Eugeni Belda - 2020 - Gigascience 9 (3):giaa010.
    Background: Microbiome biomarker discovery for patient diagnosis, prognosis, and risk evaluation is attracting broad interest. Selected groups of microbial features provide signatures that characterize host disease states such as cancer or cardio-metabolic diseases. Yet, the current predictive models stemming from machine learning still behave as black boxes and seldom generalize well. Their interpretation is challenging for physicians and biologists, which makes them difficult to trust and use routinely in the physician-patient decision-making process. Novel methods that provide interpretability and biological (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 941