Results for 'Hilbert space'

956 found
Order:
  1. Hilbert Space dimensions 3, 4, 5.Paul Merriam, Daniel Huber & Bob Hanlon - forthcoming - Foundations of Physics:6.
    This is a pdf of a Mathematica calculation that supplements the paper "Presentist Fragmentalism and Quantum Mechanics" forthcoming in Foundations of Physics. In that paper the Born rule (or at least a progenitor) is derived from experimental conditions on the mutual observations of two fragments. In this pdf the experimental conditions are applied to Hilbert space dimensions 3, 4, and 5. It turns out each of these have a 1-dimensional solution space which, it is hoped, can be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. The isomorphism of Minkowski space and the separable complex Hilbert space and its physical interpretation.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier:SSRN) 13 (31):1-3.
    An isomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That isomorphism can be interpreted physically as the invariance between a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting another way for proving it, more concise and meaningful physically. Mathematically, the isomorphism means (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. On the Role of Inconsistency in Quantum Foundational Debate and Hilbert Space Formulation.Debajyoti Gangopadhyay - 2022 - Quanta 11 (Number 1):28-41.
    This article is intended mainly to develop an expository outline of an inherently inconsistent reasoning in the development of quantum mechanics during 1920s, which set up the background of proposing different variants of quantum logic a bit later. We will discuss here two of the quantum logical variants with reference to Hilbert space formulation, based on the proposals of Bohr and Schrödinger as a result of addressing the same kernel of difficulties and will give a relative comparison. Our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Reality as a Vector in Hilbert Space.Sean M. Carroll - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer. pp. 211-224.
    I defend the extremist position that the fundamental ontology of the world consists of a vector in Hilbert space evolving according to the Schrödinger equation. The laws of physics are determined solely by the energy eigenspectrum of the Hamiltonian. The structure of our observed world, including space and fields living within it, should arise as a higher-level emergent description. I sketch how this might come about, although much work remains to be done.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  7. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The Solution of the Invariant Subspace Problem. Complex Hilbert Space. External Countable Dimensional Linear spaces Over Field *Rc#. Part II.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (11): 31-69.
    We present a new approach to the invariant subspace problem for complex Hilbert spaces.This approach based on nonconservative Extension of the Model Theoretical NSA. Our main result will be that: if T is a bounded linear operator on an infinite-dimensional complex separable Hilbert space H,it follow that T has a non-trivial closed invariant subspace.
    Download  
     
    Export citation  
     
    Bookmark  
  9. (2 other versions)The Solution of the Invariant Subspace Problem. Part I. Complex Hilbert space.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (10):51-89.
    The incompleteness of set theory ZFC leads one to look for natural extensions of ZFC in which one can prove statements independent of ZFC which appear to be "true". One approach has been to add large cardinal axioms. Or, one can investigate second-order expansions like Kelley-Morse class theory, KM or Tarski- Grothendieck set theory TG [1]-[3] It is a non-conservative extension of ZFC and is obtaineed from other axiomatic set theories by the inclusion of Tarski's axiom which implies the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to (Hilbert) Vector Spaces.David Ellerman - 2022 - Foundations of Physics 52 (5):1-40.
    The purpose of this paper is to show that the mathematics of quantum mechanics is the mathematics of set partitions linearized to vector spaces, particularly in Hilbert spaces. That is, the math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions. The key analytical concepts are definiteness versus indefiniteness, distinctions versus indistinctions, and distinguishability versus indistinguishability. The key machinery to go from indefinite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
    The paper considers a generalization of Peano arithmetic, Hilbert arithmetic as the basis of the world in a Pythagorean manner. Hilbert arithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbert arithmetic identifies by itself information related to finite sets and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Meršić o Hilbertovoj aksiomatskoj metodi [Meršić on Hilbert's axiomatic method].Srećko Kovač - 2006 - In E. Banić-Pajnić & M. Girardi Karšulin (eds.), Zbornik u čast Franji Zenku. pp. 123-135.
    The criticism of Hilbert's axiomatic system of geometry by Mate Meršić (Merchich, 1850-1928), presented in his work "Organistik der Geometrie" (1914, also in "Modernes und Modriges", 1914), is analyzed and discussed. According to Meršić, geometry cannot be based on its own axioms, as a logical analysis of spatial intuition, but must be derived as a "spatial concretion" using "higher" axioms of arithmetic, logic, and "rational algorithmics." Geometry can only be one, because space is also only one. It cannot (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a particular case of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Probing finite coarse-grained virtual Feynman histories with sequential weak values.Danko D. Georgiev & Eliahu Cohen - 2018 - Physical Review A 97 (5):052102.
    Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  80
    Mathematical Models for Unstable Quantum Systems and Gamow States.Manuel Gadella, Sebastian Fortin, Juan Pablo Jorge & Marcelo Losada - 2022 - Entropy 24 (6):804.
    We review some results in the theory of non-relativistic quantum unstable systems. We account for the most important definitions of quantum resonances that we identify with unstable quantum systems. Then, we recall the properties and construction of Gamow states as vectors in some extensions of Hilbert spaces, called Rigged Hilbert Spaces. Gamow states account for the purely exponential decaying part of a resonance; the experimental exponential decay for long periods of time physically characterizes a resonance. We briefly discuss (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. The generalization of the Periodic table. The "Periodic table" of dark matter.Vasil Penchev - 2021 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 4 (4):1-12.
    The thesis is: the “periodic table” of “dark matter” is equivalent to the standard periodic table of the visible matter being entangled. Thus, it is to consist of all possible entangled states of the atoms of chemical elements as quantum systems. In other words, an atom of any chemical element and as a quantum system, i.e. as a wave function, should be represented as a non-orthogonal in general (i.e. entangled) subspace of the separable complex Hilbert space relevant to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  33. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  35. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Typical Quantum States of the Universe are Observationally Indistinguishable.Eddy Keming Chen & Roderich Tumulka - 2024
    This paper is about the epistemology of quantum theory. We establish a new result about a limitation to knowledge of its central object---the quantum state of the universe. We show that, if the universal quantum state can be assumed to be a typical unit vector from a high-dimensional subspace of Hilbert space (such as the subspace defined by a low-entropy macro-state as prescribed by the Past Hypothesis), then no observation can determine (or even just narrow down significantly) which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary particle, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. More Than Impossible: Negative and Complex Probabilities and Their Philosophical Interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (16):1-7.
    A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Synopsis of the Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We summarize a new realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  68
    Is quantum mechanics real or complex?Shu-Di Yang - manuscript
    It has been long debated whether quantum mechanics is real or complex. Local experiments have been carried out confirming the complex nature of quantum mechanics in the standard formalism. Nevertheless, recent theoretical work demonstrated that in a closed universe, quantum mechanics is real. We discuss the philosophical implications of whether quantum mechanics is real or complex.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Topos Theoretic Quantum Realism.Benjamin Eva - 2017 - British Journal for the Philosophy of Science 68 (4):1149-1181.
    ABSTRACT Topos quantum theory is standardly portrayed as a kind of ‘neo-realist’ reformulation of quantum mechanics.1 1 In this article, I study the extent to which TQT can really be characterized as a realist formulation of the theory, and examine the question of whether the kind of realism that is provided by TQT satisfies the philosophical motivations that are usually associated with the search for a realist reformulation of quantum theory. Specifically, I show that the notion of the quantum state (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  43.  92
    Quantum Theory from Probability Conservation.Mehran Shaghaghi - manuscript
    In this work, we derive the standard formalism of quantum theory by analyzing the behavior of single-variable systems under measurements. These systems, with minimal information capacity, exhibit indeterministic behavior in independent measurements while yielding probabilistically predictable outcomes in dependent measurements. Enforcing probability conservation in the probability transformations leads to the derivation of the Born rule, which subsequently gives rise to the Hilbert space structure and the Schrödinger equation. Additionally, we show that preparing physical systems in coherent states —crucial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. “Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7.
    The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. A New Logic, a New Information Measure, and a New Information-Based Approach to Interpreting Quantum Mechanics.David Ellerman - 2024 - Entropy Special Issue: Information-Theoretic Concepts in Physics 26 (2).
    The new logic of partitions is dual to the usual Boolean logic of subsets (usually presented only in the special case of the logic of propositions) in the sense that partitions and subsets are category-theoretic duals. The new information measure of logical entropy is the normalized quantitative version of partitions. The new approach to interpreting quantum mechanics (QM) is showing that the mathematics (not the physics) of QM is the linearized Hilbert space version of the mathematics of partitions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to a new formulation of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Quantum information theoretic approach to the mind–brain problem.Danko D. Georgiev - 2020 - Progress in Biophysics and Molecular Biology 158:16-32.
    The brain is composed of electrically excitable neuronal networks regulated by the activity of voltage-gated ion channels. Further portraying the molecular composition of the brain, however, will not reveal anything remotely reminiscent of a feeling, a sensation or a conscious experience. In classical physics, addressing the mind–brain problem is a formidable task because no physical mechanism is able to explain how the brain generates the unobservable, inner psychological world of conscious experiences and how in turn those conscious experiences steer the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. The Identity of Logic and the World in Terms of Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (21):1-4.
    One can construct a mapping between Hilbert space and the class of all logic if the latter is defined as the set of all well-orderings of some relevant set (or class). That mapping can be further interpreted as a mapping of all states of all quantum systems, on the one hand, and all logic, on the other hand. The collection of all states of all quantum systems is equivalent to the world (the universe) as a whole. Thus that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The Stochastic-Quantum Correspondence.Jacob A. Barandes - manuscript
    This paper introduces an exact correspondence between a general class of stochastic systems and quantum theory. This correspondence provides a new framework for using Hilbert-space methods to formulate highly generic, non-Markovian types of stochastic dynamics, with potential applications throughout the sciences. This paper also uses the correspondence in the other direction to reconstruct quantum theory from physical models that consist of trajectories in configuration spaces undergoing stochastic dynamics. The correspondence thereby yields a new formulation of quantum theory, alongside (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. The Completeness: From Henkin's Proposition to Quantum Computer.Vasil Penchev - 2018 - Логико-Философские Штудии 16 (1-2):134-135.
    The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all infinite sets. (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 956