Results for 'Introspection, Signal Detection Theory, Scientific Models, Introspective Devices, Neural Networks'

969 found
Order:
  1. Models of Introspection vs. Introspective Devices Testing the Research Programme for Possible Forms of Introspection.Krzysztof Dołęga - 2023 - Journal of Consciousness Studies 30 (9):86-101.
    The introspective devices framework proposed by Kammerer and Frankish (this issue) offers an attractive conceptual tool for evaluating and developing accounts of introspection. However, the framework assumes that different views about the nature of introspection can be easily evaluated against a set of common criteria. In this paper, I set out to test this assumption by analysing two formal models of introspection using the introspective device framework. The question I aim to answer is not only whether models developed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Introspection Is Signal Detection.Jorge Morales - forthcoming - British Journal for the Philosophy of Science.
    Introspection is a fundamental part of our mental lives. Nevertheless, its reliability and its underlying cognitive architecture have been widely disputed. Here, I propose a principled way to model introspection. By using time-tested principles from signal detection theory (SDT) and extrapolating them from perception to introspection, I offer a new framework for an introspective signal detection theory (iSDT). In SDT, the reliability of perceptual judgments is a function of the strength of an internal perceptual response (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  3. Comparison of Neural Network NARMA-L2 Model Reference and Predictive Controllers for Nonlinear EMS Magnetic Levitation Train.Mustefa Jibril & Eliyas Alemayehu - 2020 - Report and Opinion Journal 12 (5):21-25.
    Magnetic levitation system is operated primarily based at the principle of magnetic attraction and repulsion to levitate the passengers and the train. However, magnetic levitation trains are rather nonlinear and open loop unstable which makes it hard to govern. In this paper, investigation, design and control of a nonlinear Maglev train based on NARMA-L2, model reference and predictive controllers. The response of the Maglev train with the proposed controllers for the precise role of a Magnetic levitation machine have been as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Comparison of Neural Network Based Controllers for Nonlinear EMS Magnetic Levitation Train.Mustefa Jibril, Elias Alemayehu & Mesay Tadesse - 2020 - International Journal of Advance Research and Innovative Ideas in Education 6 (2):801-807.
    Magnetic levitation system is operated primarily based at the principle of magnetic attraction and repulsion to levitate the passengers and the train. However, magnetic levitation trains are rather nonlinear and open loop unstable which makes it hard to govern. In this paper, investigation, design and control of a nonlinear Maglev train based on NARMA-L2, model reference and predictive controllers. The response of the Maglev train with the proposed controllers for the precise role of a Magnetic levitation machine have been as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  60
    Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
    : Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly established quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine?Antoine Danchin & André A. Fenton - 2022 - Frontiers in Ecology and Evolution 10:796413.
    The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is with computing, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  56
    Advanced Driver Drowsiness Detection Model Using Optimized Machine Learning Algorithms.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):396-402.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  71
    OPTIMIZED DRIVER DROWSINESS DETECTION USING MACHINE LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):395-400.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Recurrent Neural Network Based Speech emotion detection using Deep Learning.P. Pavithra - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):65-77.
    In modern days, person-computer communication systems have gradually penetrated our lives. One of the crucial technologies in person-computer communication systems, Speech Emotion Recognition (SER) technology, permits machines to correctly recognize emotions and greater understand users' intent and human-computer interlinkage. The main objective of the SER is to improve the human-machine interface. It is also used to observe a person's psychological condition by lie detectors. Automatic Speech Emotion Recognition(SER) is vital in the person-computer interface, but SER has challenges for accurate recognition. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Low attention impairs optimal incorporation of prior knowledge in perceptual decisions.Jorge Morales, Guillermo Solovey, Brian Maniscalco, Dobromir Rahnev, Floris P. de Lange & Hakwan Lau - 2015 - Attention, Perception, and Psychophysics 77 (6):2021-2036.
    When visual attention is directed away from a stimulus, neural processing is weak and strength and precision of sensory data decreases. From a computational perspective, in such situations observers should give more weight to prior expectations in order to behave optimally during a discrimination task. Here we test a signal detection theoretic model that counter-intuitively predicts subjects will do just the opposite in a discrimination task with two stimuli, one attended and one unattended: when subjects are probed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  73
    AI-Driven Emotion Recognition and Regulation Using Advanced Deep Learning Models.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):383-389.
    Emotion detection and management have emerged as pivotal areas in humancomputer interaction, offering potential applications in healthcare, entertainment, and customer service. This study explores the use of deep learning (DL) models to enhance emotion recognition accuracy and enable effective emotion regulation mechanisms. By leveraging large datasets of facial expressions, voice tones, and physiological signals, we train deep neural networks to recognize a wide array of emotions with high precision. The proposed system integrates emotion recognition with adaptive management (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Machine learning in scientific grant review: algorithmically predicting project efficiency in high energy physics.Vlasta Sikimić & Sandro Radovanović - 2022 - European Journal for Philosophy of Science 12 (3):1-21.
    As more objections have been raised against grant peer-review for being costly and time-consuming, the legitimate question arises whether machine learning algorithms could help assess the epistemic efficiency of the proposed projects. As a case study, we investigated whether project efficiency in high energy physics can be algorithmically predicted based on the data from the proposal. To analyze the potential of algorithmic prediction in HEP, we conducted a study on data about the structure and outcomes of HEP experiments with the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Predicting Fire Alarms in Smoke Detection using Neural Networks.Maher Wissam Attia, Baraa Akram Abu Zaher, Nidal Hassan Nasser, Ruba Raed Al-Hour, Aya Haider Asfour & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):26-33.
    Abstract: This research paper presents the development and evaluation of a neural network-based model for predicting fire alarms in smoke detection systems. Using a dataset from Kaggle containing 15 features and 3487 samples, we trained and validated a neural network with a three-layer architecture. The model achieved an accuracy of 100% and an average error of 0.0000003. Additionally, we identified the most influential features in predicting fire alarms.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Web page phishing detection Using Neural Network.Ahmed Salama Abu Zaiter & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):1-13.
    Web page phishing is a type of phishing attack that targets websites. In a web page phishing attack, the attacker creates a fake website that looks like a legitimate website, such as a bank or credit card company website. The attacker then sends a fraudulent message to the victim, which contains a link to the fake website. When the victim clicks on the link, they are taken to the fake website and tricked into entering their personal information.Web page phishing attacks (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Lung Cancer Detection Using Artificial Neural Network.Ibrahim M. Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (3):17-23.
    In this paper, we developed an Artificial Neural Network (ANN) for detect the absence or presence of lung cancer in human body. Symptoms were used to diagnose the lung cancer, these symptoms such as Yellow fingers, Anxiety, Chronic Disease, Fatigue, Allergy, Wheezing, Coughing, Shortness of Breath, Swallowing Difficulty and Chest pain. They were used and other information about the person as input variables for our ANN. Our ANN established, trained, and validated using data set, which its title is “survey (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Neural Network-Based Audit Risk Prediction: A Comprehensive Study.Saif al-Din Yusuf Al-Hayik & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):43-51.
    Abstract: This research focuses on utilizing Artificial Neural Networks (ANNs) to predict Audit Risk accurately, a critical aspect of ensuring financial system integrity and preventing fraud. Our dataset, gathered from Kaggle, comprises 18 diverse features, including financial and historical parameters, offering a comprehensive view of audit-related factors. These features encompass 'Sector_score,' 'PARA_A,' 'SCORE_A,' 'PARA_B,' 'SCORE_B,' 'TOTAL,' 'numbers,' 'marks,' 'Money_Value,' 'District,' 'Loss,' 'Loss_SCORE,' 'History,' 'History_score,' 'score,' and 'Risk,' with a total of 774 samples. Our proposed neural network architecture, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Predicting Audit Risk Using Neural Networks: An In-depth Analysis.Dana O. Abu-Mehsen, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):48-56.
    Abstract: This research paper presents a novel approach to predict audit risks using a neural network model. The dataset used for this study was obtained from Kaggle and comprises 774 samples with 18 features, including Sector_score, PARA_A, SCORE_A, PARA_B, SCORE_B, TOTAL, numbers, marks, Money_Value, District, Loss, Loss_SCORE, History, History_score, score, and Risk. The proposed neural network architecture consists of three layers, including one input layer, one hidden layer, and one output layer. The neural network model was trained (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Alzheimer: A Neural Network Approach with Feature Analysis.Hussein Khaled Qarmout & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):10-18.
    Abstract Alzheimer's disease has spread insanely throughout the world. Early detection and intervention are essential to improve the chances of a positive outcome. This study presents a new method to predict a person's likelihood of developing Alzheimer's using a neural network model. The dataset includes 373 samples with 10 features, such as Group,M/F,Age,EDUC, SES,MMSE,CDR ,eTIV,nWBV,Oldpeak,ASF.. A four-layer neural network model (1 input, 2 hidden, 1 output) was trained on the dataset and achieved an accuracy of 98.10% and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Predicting Heart Disease using Neural Networks.Ahmed Muhammad Haider Al-Sharif & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):40-46.
    Cardiovascular diseases, including heart disease, pose a significant global health challenge, contributing to a substantial burden on healthcare systems and individuals. Early detection and accurate prediction of heart disease are crucial for timely intervention and improved patient outcomes. This research explores the potential of neural networks in predicting heart disease using a dataset collected from Kaggle, consisting of 1025 samples with 14 distinct features. The study's primary objective is to develop an effective neural network model for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Artificial Neural Network Heart Failure Prediction Using JNN.Khaled M. Abu Al-Jalil & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):26-34.
    Heart failure is a major cause of death worldwide. Early detection and intervention are essential for improving the chances of a positive outcome. This study presents a novel approach to predicting the likelihood of a person having heart failure using a neural network model. The dataset comprises 918 samples with 11 features, such as age, sex, chest pain type, resting blood pressure, cholesterol, fasting blood sugar, resting electrocardiogram results, maximum heart rate achieved, exercise-induced angina, oldpeak, ST_Slope, and HeartDisease. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Heart attack analysis & Prediction: A Neural Network Approach with Feature Analysis.Majd N. Allouh & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):47-54.
    heart attack analysis & prediction dataset is a major cause of death worldwide. Early detection and intervention are essential for improving the chances of a positive outcome. This study presents a novel approach to predicting the likelihood of a person having heart failure using a neural network model. The dataset comprises 304 samples with 11 features, such as age, sex, chest pain type, Trtbps, cholesterol, fasting blood sugar, resting electrocardiogram results, maximum heart rate achieved, exercise-induced angina, oldpeak, ST_Slope, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Predicting Kidney Stone Presence from Urine Analysis: A Neural Network Approach using JNN.Amira Jarghon & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):32-39.
    Kidney stones pose a significant health concern, and early detection can lead to timely intervention and improved patient outcomes. This research endeavours to predict the presence of kidney stones based on urine analysis, utilizing a neural network model. A dataset of 552 urine specimens, comprising six essential physical characteristics (specific gravity, pH, osmolarity, conductivity, urea concentration, and calcium concentration), was collected and prepared. Our proposed neural network architecture, featuring three layers (input, hidden, output), was trained and validated, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. The scientific study of passive thinking: Methods of mind wandering research.Samuel Murray, Zachary C. Irving & Kristina Krasich - 2022 - In Felipe de Brigard & Walter Sinnott-Armstrong (eds.), Neuroscience and philosophy. Cambridge, Massachusetts: The MIT Press. pp. 389-426.
    The science of mind wandering has rapidly expanded over the past 20 years. During this boom, mind wandering researchers have relied on self-report methods, where participants rate whether their minds were wandering. This is not an historical quirk. Rather, we argue that self-report is indispensable for researchers who study passive phenomena like mind wandering. We consider purportedly “objective” methods that measure mind wandering with eye tracking and machine learning. These measures are validated in terms of how well they predict self-reports, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Design and Control of Steam Flow in Cement Production Process using Neural Network Based Controllers.Mustefa Jibril - 2020 - Researcher 12 (5):76-84.
    In this paper a NARMA L2, model reference and neural network predictive controller is utilized in order to control the output flow rate of the steam in furnace by controlling the steam flow valve. The steam flow control system is basically a feedback control system which is mostly used in cement production industries. The design of the system with the proposed controllers is done with Matlab/Simulink toolbox. The system is designed for the actual steam flow output to track the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Folk Psychology, Eliminativism, and the Present State of Connectionism.Vanja Subotić - 2021 - Theoria: Beograd 1 (64):173-196.
    Three decades ago, William Ramsey, Steven Stich & Joseph Garon put forward an argument in favor of the following conditional: if connectionist models that implement parallelly distributed processing represent faithfully human cognitive processing, eliminativism about propositional attitudes is true. The corollary of their argument (if it proves to be sound) is that there is no place for folk psychology in contemporary cognitive science. This understanding of connectionism as a hypothesis about cognitive architecture compatible with eliminativism is also endorsed by Paul (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Leveraging Artificial Neural Networks for Cancer Prediction: A Synthetic Dataset Approach.Mohammed S. Abu Nasser & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (11):43-51.
    Abstract: This research explores the application of artificial neural networks (ANNs) in predicting cancer using a synthetically generated dataset designed for research purposes. The dataset comprises 10,000 pseudo-patient records, each characterized by gender, age, smoking history, fatigue, and allergy status, along with a binary indicator for the presence or absence of cancer. The 'Gender,' 'Smoking,' 'Fatigue,' and 'Allergy' attributes are binary, while 'Age' spans a range from 18 to 100 years. The study employs a three-layer ANN architecture to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. THE THEORY OF EVOLUTION: from the space vacuum to neural networks and moving forward.Oleg Bazaluk - 2014 - ISPC.
    In the book, the author defines the evolution as a continuous and nonlinear complex of the structure of matter, interaction types and environments of existence; analyzes existing in modern science and philosophy approaches to the study of the process of evolution, degree of development factors and causes of evolution. Unifying interdisciplinary research in cosmology, evolution, biology, neuroscience and philosophy, the author presents his vision of the evolution model of «Evolving matter», which allows us to consider not only the laws of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  57
    ADVANCED EMOTION RECOGNITION AND REGULATION UTILIZING DEEP LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):383-388.
    Emotion detection and management have emerged as pivotal areas in humancomputer interaction, offering potential applications in healthcare, entertainment, and customer service. This study explores the use of deep learning (DL) models to enhance emotion recognition accuracy and enable effective emotion regulation mechanisms. By leveraging large datasets of facial expressions, voice tones, and physiological signals, we train deep neural networks to recognize a wide array of emotions with high precision. The proposed system integrates emotion recognition with adaptive management (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Smoke Detectors Using ANN.Marwan R. M. Al-Rayes & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):1-9.
    Abstract: Smoke detectors are critical devices for early fire detection and life-saving interventions. This research paper explores the application of Artificial Neural Networks (ANNs) in smoke detection systems. The study aims to develop a robust and accurate smoke detection model using ANNs. Surprisingly, the results indicate a 100% accuracy rate, suggesting promising potential for ANNs in enhancing smoke detection technology. However, this paper acknowledges the need for a comprehensive evaluation beyond accuracy. It discusses potential (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Varieties of representation in evolved and embodied neural networks.Pete Mandik - 2003 - Biology and Philosophy 18 (1):95-130.
    In this paper I discuss one of the key issuesin the philosophy of neuroscience:neurosemantics. The project of neurosemanticsinvolves explaining what it means for states ofneurons and neural systems to haverepresentational contents. Neurosemantics thusinvolves issues of common concern between thephilosophy of neuroscience and philosophy ofmind. I discuss a problem that arises foraccounts of representational content that Icall ``the economy problem'': the problem ofshowing that a candidate theory of mentalrepresentation can bear the work requiredwithin in the causal economy of a mind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Predictive Modeling of Breast Cancer Diagnosis Using Neural Networks:A Kaggle Dataset Analysis.Anas Bachir Abu Sultan & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):1-9.
    Breast cancer remains a significant health concern worldwide, necessitating the development of effective diagnostic tools. In this study, we employ a neural network-based approach to analyze the Wisconsin Breast Cancer dataset, sourced from Kaggle, comprising 570 samples and 30 features. Our proposed model features six layers (1 input, 1 hidden, 1 output), and through rigorous training and validation, we achieve a remarkable accuracy rate of 99.57% and an average error of 0.000170 as shown in the image below. Furthermore, our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Uncovering the antecedents of trust in social commerce: an application of the non-linear artificial neural network approach.Hussam Al Halbusi - 2022 - Competitiveness Review 4.
    Purpose – The internet creates ample opportunities to start a mobile social commerce business. The literature confirms the issue of customer trust for social commerce businesses is a challenge that must be addressed. Hence, this study aims to examine the antecedents of trust in mobile social commerce by applying linear and non-linear relationships based on partial least squares structural equation modeling and an artificial neural network model. -/- Design/methodology/approach – This study applied a non-linear artificial neural network approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. THE SPECTACLE OF REFLECTION: ON DREAMS, NEURAL NETWORKS AND THE VISUAL NATURE OF THOUGHT.Magdalena Szalewicz - manuscript
    The article considers the problem of images and the role they play in our reflection turning to evidence provided by two seemingly very distant theories of mind together with two sorts of corresponding visions: dreams as analyzed by Freud who claimed that they are pictures of our thoughts, and their mechanical counterparts produced by neural networks designed for object recognition and classification. Freud’s theory of dreams has largely been ignored by philosophers interested in cognition, most of whom focused (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. (1 other version)The experimental use of introspection in the scientific study of pain and its integration with third-person methodologies: The experiential-phenomenological approach.Murat Aydede & Donald D. Price - 2005 - In Pain: New Essays on its Nature and the Methodology of its Study. MIT Press. pp. 243--273.
    Understanding the nature of pain depends, at least partly, on recognizing its subjectivity (thus, its first-person epistemology). This in turn requires using a first-person experiential method in addition to third-person experimental approaches to study it. This paper is an attempt to spell out what the former approach is and how it can be integrated with the latter. We start our discussion by examining some foundational issues raised by the use of introspection. We argue that such a first-person method in the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  36. Adaptive Channel Hopping for IEEE 802.15. 4 TSCH-Based Networks: A Dynamic Bernoulli Bandit Approach.Taheri Javan Nastooh - 2021 - IEEE Sensors Journal 21 (20):23667-23681.
    In IEEE 802.15.4 standard for low-power low-range wireless communications, only one channel is employed for transmission which can result in increased energy consumption, high network delay and poor packet delivery ratio (PDR). In the subsequent IEEE 802.15.4-2015 standard, a Time-slotted Channel Hopping (TSCH) mechanism has been developed which allows for a periodic yet fixed frequency hopping pattern over 16 different channels. Unfortunately, however, most of these channels are susceptible to high-power coexisting Wi-Fi signal interference and to possibly some other (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. INFERENCE AND REPRESENTATION: PHILOSOPHICAL AND COGNITIVE ISSUES.Igor Mikhailov - 2020 - Vestnik Tomskogo Gosudarstvennogo Universiteta. Filosofiya, Sotsiologiya, Politologiya 1 (58):34-46.
    The paper is dedicated to particular cases of interaction and mutual impact of philosophy and cognitive science. Thus, philosophical preconditions in the middle of the 20th century shaped the newly born cognitive science as mainly based on conceptual and propositional representations and syntactical inference. Further developments towards neural networks and statistical representations did not change the prejudice much: many still believe that network models must be complemented with some extra tools that would account for proper human cognitive traits. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Deep Learning Techniques for Comprehensive Emotion Recognition and Behavioral Regulation.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):383-389.
    Emotion detection and management have emerged as pivotal areas in humancomputer interaction, offering potential applications in healthcare, entertainment, and customer service. This study explores the use of deep learning (DL) models to enhance emotion recognition accuracy and enable effective emotion regulation mechanisms. By leveraging large datasets of facial expressions, voice tones, and physiological signals, we train deep neural networks to recognize a wide array of emotions with high precision. The proposed system integrates emotion recognition with adaptive management (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Making Meaning Happen.Patrick Grim - 2004 - Journal for Experimental and Theoretical Artificial Intelligence 16:209-244.
    What is it for a sound or gesture to have a meaning, and how does it come to have one? In this paper, a range of simulations are used to extend the tradition of theories of meaning as use. The authors work throughout with large spatialized arrays of sessile individuals in an environment of wandering food sources and predators. Individuals gain points by feeding and lose points when they are hit by a predator and are not hiding. They can also (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. The Scientific Evidence for Materialism About Pain.Andrew Melnyk - 2015 - In Steven M. Miller (ed.), The Constitution of Phenomenal Consciousness: Toward a Science and Theory. Philadelphia: John Benjamins. pp. 310-329.
    This paper argues in unprecedented empirical and philosophical detail that, given only what science has discovered about pain, we should prefer the materialist hypothesis that pains are purely material over the dualist hypothesis that they are immaterial. The empirical findings cited provide strong evidence for the thesis of empirical supervenience: that to every sort of introspectible change over time in pains, or variation among pains at a time, there corresponds in fact a certain sort of simultaneous neural change over (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. (1 other version) FIRE MANAGEMENT SYSTEM FOR INDUTRIAL SAFETY APPLICATIONS.M. Arul Selvan - 2023 - Journal of Science Technology and Research (JSTAR) 4 (1):247-259.
    The proposed model in this paper employs different integrated detectors, such as heat, smoke, and flame. The signals from those detectors go through the system algorithm to check the fire's potentiality and then broadcast the predicted result to various parties using GSM modem associated with the GSM network system. The system uses various sensors to detect fire, smoke, and gas, then transmits the message using GSM module. After the message, send by the module the help arrives in 15 minutes. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Introspective evidence in psychology.Gary Hatfield - 2005 - In Peter Achinstein (ed.), Scientific Evidence: Philosophical Theories & Applications. The Johns Hopkins University Press.
    In preparation for examining the place of introspective evidence in scientific psychology, the chapter begins by clarifying what introspection has been supposed to show, and why some concluded that it couldn't deliver. This requires a brief excursus into the various uses to which introspection was supposed to have been put by philosophers and psychologists in the modern period, together with a summary of objections. It then reconstructs some actual uses of introspection (or related techniques, differently monikered) in the (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  43. The Neural Substrates of Conscious Perception without Performance Confounds.Jorge Morales, Brian Odegaard & Brian Maniscalco - forthcoming - In Felipe De Brigard & Walter Sinnott-Armstrong (eds.), Anthology of Neuroscience and Philosophy.
    To find the neural substrates of consciousness, researchers compare subjects’ neural activity when they are aware of stimuli against neural activity when they are not aware. Ideally, to guarantee that the neural substrates of consciousness—and nothing but the neural substrates of consciousness—are isolated, the only difference between these two contrast conditions should be conscious awareness. Nevertheless, in practice, it is quite challenging to eliminate confounds and irrelevant differences between conscious and unconscious conditions. In particular, there (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Linguistic Competence and New Empiricism in Philosophy and Science.Vanja Subotić - 2023 - Dissertation, University of Belgrade
    The topic of this dissertation is the nature of linguistic competence, the capacity to understand and produce sentences of natural language. I defend the empiricist account of linguistic competence embedded in the connectionist cognitive science. This strand of cognitive science has been opposed to the traditional symbolic cognitive science, coupled with transformational-generative grammar, which was committed to nativism due to the view that human cognition, including language capacity, should be construed in terms of symbolic representations and hardwired rules. Similarly, linguistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Introspection.D. M. Armstrong - 1994 - In Quassim Cassam (ed.), Self-Knowledge. New York: Oxford University Press. pp. 109--117.
    This paper will argue that there is no such thing as introspective access to judgments and decisions. I t won't challenge the existence of introspective access to perceptual and imagistic states, nor to emotional feelings and bodily sensations. On the contrary, the model presented in Section 2 presumes such access. Hence introspection is here divided into two categories: introspection of propositional attitude events, on the one hand, and introspection of broadly perceptual events, on the other. I shall assume (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  46. Inverted Pendulum Control using NARMA-l2 with Resilient Backpropagation and Levenberg Marquardt Backpropagation Training Algorithm.Mustefa Jibril, Mesay Tadesse & Nurye Hassen - 2021 - Journal of Engineering and Applied Sciences 16 (10):324-330.
    In this study, the performance of inverted pendulum has been Investigated using neural network control theory. The proposed controllers used in this study are NARMA-L2 with Resilient backpropagation and Levenberg Marquardt backpropagation algorithm controllers. The mathematical model of Inverted Pendulum on a Cart driving mechanism have been done successfully. Comparison of an inverted pendulum with NARMA-L2 with Resilient backpropagation and Levenberg Marquardt backpropagation algorithm controllers for a control target deviation of an angle from vertical of the inverted pendulum using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Situated Intelligence: An Introspective Model of Consciousness.Stephen G. Perrin -
    The model of consciousness developed here is a cooperative venture between mind, brain, body, nature, culture, community, and family. The overall unity of consciousness is provided by the loop of engagement that conducts intentional action into the ambient. Each successive round of engagement between subject and world generates a gap of disparity between remembrance of purpose or intent and the effect achieved on the operative level of understanding within a larger taxonomic scheme in experience. That gap sends a delta (...) that arouses various parameters of motivation to form a configuration that constitutes a felt situation within subjective experience. That delta signal and felt situation are nothing other than our subjective experience of consciousness. Situated intelligence is the first-person awareness stimulated by a particular complement of motivational parameters. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Controlling for performance capacity confounds in neuroimaging studies of conscious awareness.Jorge Morales, Jeffrey Chiang & Hakwan Lau - 2015 - Neuroscience of Consciousness 1:1-11.
    Studying the neural correlates of conscious awareness depends on a reliable comparison between activations associated with awareness and unawareness. One particularly difficult confound to remove is task performance capacity, i.e. the difference in performance between the conditions of interest. While ideally task performance capacity should be matched across different conditions, this is difficult to achieve experimentally. However, differences in performance could theoretically be corrected for mathematically. One such proposal is found in a recent paper by Lamy, Salti and Bar-Haim (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  49. Brain Function on the Basis of Biological Equilibrium - The Triggering Brain (2nd edition).Juergen Stueber - 2023 - Journal of Neurophilosophy 2023 (2(2)):432-452.
    A model of brain function is presented that is consistently based on the biological principle of equilibrium. The neuronal modules of the cerebral cortex are proposed as units in which equilibrium between incoming signals and the synaptic structure is determined or established. Because of the electromagnetic activity of the brain, the electromagnetic properties of thecells are brought into focus. Due to the synaptic changes of the modules -essentially during sleep -an electromagnetic resting balance between the modules is established. Incoming signals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Scientific Theories as Bayesian Nets: Structure and Evidence Sensitivity.Patrick Grim, Frank Seidl, Calum McNamara, Hinton E. Rago, Isabell N. Astor, Caroline Diaso & Peter Ryner - 2022 - Philosophy of Science 89 (1):42-69.
    We model scientific theories as Bayesian networks. Nodes carry credences and function as abstract representations of propositions within the structure. Directed links carry conditional probabilities and represent connections between those propositions. Updating is Bayesian across the network as a whole. The impact of evidence at one point within a scientific theory can have a very different impact on the network than does evidence of the same strength at a different point. A Bayesian model allows us to envisage (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 969