Results for 'Quantum indeterminism'

918 found
Order:
  1. Quantum Indeterminism, Free Will, and Self-Causation.Marco Masi - 2023 - Journal of Consciousness Studies 30 (5-6):32–56.
    A view that emancipates free will by means of quantum indeterminism is frequently rejected based on arguments pointing out its incompatibility with what we know about quantum physics. However, if one carefully examines what classical physical causal determinism and quantum indeterminism are according to physics, it becomes clear what they really imply–and, especially, what they do not imply–for agent-causation theories. Here, we will make necessary conceptual clarifications on some aspects of physical determinism and indeterminism, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Deterministic and indeterministic morality and duality. Quantum and philosophical approach.Darwin Deivy Zambrano Castellano - manuscript
    Quantum mechanics is a fundamental theory in physics that describes the behavior of subatomic particles and systems at very small scales. Unlike classical theories, quantum mechanics introduces elements of indeterminism in the description of physical phenomena. There are fundamental limits to the precision with which certain physical properties, such as the position and momentum of a particle, can be measured simultaneously. This implies that, even if all the initial conditions of a quantum system are known, its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Dynamics, Quantum mechanics and the Indeterminism of nature.Jörg Neunhäuserer - manuscript
    We show that determinism is false assuming a realistic interpretation of quantum mechanics and considering the sensitive dynamics of macroscopical physical systems.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Does chance hide necessity ? A reevaluation of the debate ‘determinism - indeterminism’ in the light of quantum mechanics and probability theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Indeterminism in physics and intuitionistic mathematics.Nicolas Gisin - 2021 - Synthese 199 (5-6):13345-13371.
    Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to “speak” of indeterminism, its inability to present us a worldview in which new information is created as time passes. In such a case, scientific determinism would only be an illusion due to the timeless mathematical language scientists use. To investigate this possibility it (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  8. Quantum propensities in the brain cortex and free will.Danko D. Georgiev - 2021 - Biosystems 208:104474.
    Capacity of conscious agents to perform genuine choices among future alternatives is a prerequisite for moral responsibility. Determinism that pervades classical physics, however, forbids free will, undermines the foundations of ethics, and precludes meaningful quantification of personal biases. To resolve that impasse, we utilize the characteristic indeterminism of quantum physics and derive a quantitative measure for the amount of free will manifested by the brain cortical network. The interaction between the central nervous system and the surrounding environment is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?Nicolas Gisin - 2019 - Erkenntnis 86 (6):1469-1481.
    It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an alternative classical mechanics, which is (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  11. Quantum Molinism.Thomas Harvey, Frederick Kroon, Karl Svozil & Cristian Calude - 2022 - European Journal for Philosophy of Religion 14 (3):167-194.
    In this paper we consider the possibility of a Quantum Molinism : such a view applies an analogue of the Molinistic account of free will‘s compatibility with God’s foreknowledge to God’s knowledge of (supposedly) indeterministic events at a quantum level. W e ask how (and why) a providential God could care for and know about a world with this kind of indeterminacy. We consider various formulations of such a Quantum Molinism, and after rejecting a number of options (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Indeterminism in neurobiology.Marcel Weber - 2005 - Philosophy of Science 72 (5):663-674.
    I examine different arguments that could be used to establish indeterminism of neurological processes. Even though scenarios where single events at the molecular level make the difference in the outcome of such processes are realistic, this falls short of establishing indeterminism, because it is not clear that these molecular events are subject to quantum mechanical uncertainty. Furthermore, attempts to argue for indeterminism autonomously (i.e., independently of quantum mechanics) fail, because both deterministic and indeterministic models can (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  13. Is Time Travel Too Strange to Be Possible? - Determinism and Indeterminism on Closed Timelike Curves.Ruward A. Mulder & Dennis Dieks - 2017 - In Anguel S. Stefanov & Marco Giovanelli (eds.), General Relativity 1916 - 2016. Minkowski Institute Press. pp. 93-114.
    Notoriously, the Einstein equations of general relativity have solutions in which closed timelike curves occur. On these curves time loops back onto itself, which has exotic consequences: for example, traveling back into one's own past becomes possible. However, in order to make time travel stories consistent constraints have to be satisfied, which prevents seemingly ordinary and plausible processes from occurring. This, and several other "unphysical" features, have motivated many authors to exclude solutions with CTCs from consideration, e.g. by conjecturing a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Quantum Indeterminacy and Libertarian Panpsychism.M. Masi - 2024 - Mind and Matter 22 (1):31-50.
    The “consequence argument”, together with the “luck objection”, which are summed up by the “standard argument against free will”, state that if our volition were dependent on physical causally indeterministic processes, our actions would lack control and, thereby, result in random behavior that would be a mere matter of luck and chance. In particular, quantum indeterminacy is supposed to be of no use in support of libertarian agent-causation theories because any volitional act interfering with the probability distributions de fining (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. On Some Cognitive Features of Clifford Algebraic Quantum Mechanics and the Origin of Indeterminism in this Theory: A Derivation of Heisenberg Uncertainty Principle by Using the Clifford Algebra.Elio Conte - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  16. Quantum no-go theorems and consciousness.Danko Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. Simondon and Bohm between determinism and indeterminism.Andrej Jovicevic - 2022 - Filozofija I Društvo 33 (3):648-670.
    The radical redefinition of the landscape of physics that followed the contributions of Niels Bohr and Werner Heisenberg at the start of the 20th century led to plethora [of] new perspectives on age-old metaphysical questions on determinism and the nature of reality. The main contention of this article is that the work of Gilbert Simondon - whose magnum opus possesses a scope uniting the most basic philosophical concerns with the most recent breakthroughs in natural sciences - is highly relevant for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  86
    Quantum Theory from Probability Conservation.Mehran Shaghaghi - manuscript
    In this work, we derive the standard formalism of quantum theory by analyzing the behavior of single-variable systems under measurements. These systems, with minimal information capacity, exhibit indeterministic behavior in independent measurements while yielding probabilistically predictable outcomes in dependent measurements. Enforcing probability conservation in the probability transformations leads to the derivation of the Born rule, which subsequently gives rise to the Hilbert space structure and the Schrödinger equation. Additionally, we show that preparing physical systems in coherent states —crucial for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to a new formulation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. The Stochastic-Quantum Correspondence.Jacob A. Barandes - manuscript
    This paper introduces an exact correspondence between a general class of stochastic systems and quantum theory. This correspondence provides a new framework for using Hilbert-space methods to formulate highly generic, non-Markovian types of stochastic dynamics, with potential applications throughout the sciences. This paper also uses the correspondence in the other direction to reconstruct quantum theory from physical models that consist of trajectories in configuration spaces undergoing stochastic dynamics. The correspondence thereby yields a new formulation of quantum theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  22.  48
    My God, He Plays Dice! How Albert Einstein Invented Most Of Quantum Mechanics.Bob Doyle - 2019 - Cambridge, MA: I-Phi Press.
    Is it possible that the most famous critic of quantum mechanics actually invented most of its fundamentally important concepts? -/- In his 1905 Brownian motion paper, Einstein quantized matter, proving the existence of atoms. His light quantum hypothesis showed that energy itself comes in particles (photons). He showed energy and matter are interchangeable, E = mc2. In 1905 Einstein was first to see nonlocality and instantaneous action-at-a-distance. In 1907 he saw quantum “jumps” between energy levels in matter, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. New Prospects for a Causally Local Formulation of Quantum Theory.Jacob A. Barandes - manuscript
    It is difficult to extract reliable criteria for causal locality from the limited ingredients found in textbook quantum theory. In the end, Bell humbly warned that his eponymous theorem was based on criteria that “should be viewed with the utmost suspicion.” Remarkably, by stepping outside the wave-function paradigm, one can reformulate quantum theory in terms of old-fashioned configuration spaces together with ‘unistochastic’ laws. These unistochastic laws take the form of directed conditional probabilities, which turn out to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. From Yijing to Copenhagen Interpretation of Quantum Physics.David Leong - manuscript
    In the quest and search for a physical theory of everything from the macroscopic large body matter to the microscopic elementary particles, with strange and weird concepts springing from quantum physics discovery, irreconcilable positions and inconvenient facts complicated physics – from Newtonian physics to quantum science, the question is- how do we close the gap? Indeed, there is a scientific and mathematical fireworks when the issue of quantum uncertainties and entanglements cannot be explained with classical physics. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. (2 other versions)On the logical origins of quantum mechanics demonstrated by using Clifford algebra.Elio Conte - 2011 - Electronic Journal of Theoretical Physics 8 (25):109-126.
    We review a rough scheme of quantum mechanics using the Clifford algebra. Following the steps previously published in a paper by another author [31], we demonstrate that quantum interference arises in a Clifford algebraic formulation of quantum mechanics. In 1932 J. von Neumann showed that projection operators and, in particular, quantum density matrices can be interpreted as logical statements. In accord with a previously obtained result by V. F Orlov , in this paper we invert von (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. An Investigation on the Basic Conceptual Foundations of Quantum Mechanics by Using the Clifford Algebra.Elio Conte - 2011 - Advanced Studies in Theoretical Physics 5 (11):485-544.
    We review our approach to quantum mechanics adding also some new interesting results. We start by giving proof of two important theorems on the existence of the A(Si) and i,±1 N Clifford algebras. This last algebra gives proof of the von Neumann basic postulates on the quantum measurement explaining thus in an algebraic manner the wave function collapse postulated in standard quantum theory. In this manner we reach the objective to expose a self-consistent version of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. (1 other version)Cassirer’s Functional–Based Approach in the Reconstruction of the Early Quantum Theory.Roberto Angeloni - 2018 - Disputatio. Philosophical Research Bulletin 7 (8):a012.
    I propose a rational reconstruction of the early quantum theory (1900–1913) in terms of the ideas presented by Ernst Cassirer. Specifically, I propose to reconsider the early quantum theory through the lens of the method of conceptual functionalization that Ernst Cassirer laid down in his Substance and Function (S&F, 1910) and he later refined in Determinism and Indeterminism in Modern Physics (D&I, 1937). Following Cassirer’s functional interpretation of natural sciences, it is my primary concern to reconsider the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Causal potency of consciousness in the physical world.Danko D. Georgiev - 2024 - International Journal of Modern Physics B 38 (19):2450256.
    The evolution of the human mind through natural selection mandates that our conscious experiences are causally potent in order to leave a tangible impact upon the surrounding physical world. Any attempt to construct a functional theory of the conscious mind within the framework of classical physics, however, inevitably leads to causally impotent conscious experiences in direct contradiction to evolution theory. Here, we derive several rigorous theorems that identify the origin of the latter impasse in the mathematical properties of ordinary differential (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Real Numbers are the Hidden Variables of Classical Mechanics.Nicolas Gisin - 2020 - Quantum Studies: Mathematics and Foundations 7:197–201.
    Do scientific theories limit human knowledge? In other words, are there physical variables hidden by essence forever? We argue for negative answers and illustrate our point on chaotic classical dynamical systems. We emphasize parallels with quantum theory and conclude that the common real numbers are, de facto, the hidden variables of classical physics. Consequently, real numbers should not be considered as ``physically real" and classical mechanics, like quantum physics, is indeterministic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  31. Relativistic Markovian dynamical collapse theories must employ nonstandard degrees of freedom.Wayne C. Myrvold - 2017 - Physical Review A 96:062116.
    The impossibility of an indeterministic evolution for standard relativistic quantum field theories, that is, theories in which all fields satisfy the condition that the generators of space-time translation have spectra in the forward light-cone, is demonstrated. The demonstration proceeds by arguing that a relativistically invariant theory must have a stable vacuum and then showing that stability of the vacuum, together with the requirements imposed by relativistic causality, entails deterministic evolution, if all degrees of freedom are standard degrees of freedom.
    Download  
     
    Export citation  
     
    Bookmark  
  32. (1 other version)Between Physics and Metaphysics — on Determinism, Arrow of Time and Causality.Grzegorz P. Karwasz - 2020 - Filosofiâ I Kosmologiâ 24:15-28.
    Contemporary physics, with two Einstein’s theories and with Heisenberg’s principle of indeterminacy are frequently interpreted as a removal of the causality from physics. We argue that this is wrong. There are no indications in physics, either classical or quantum, that physical laws are indeterministic, on the ontological level. On the other hand, both classical and quantum physics are, practically, indeterministic on the epistemic level: there are no means for us to predict the detailed future of the world. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Against free will in the contemporary natural sciences.Martín López-Corredoira - 2016 - In López-Corredoira Martín (ed.), Free Will: Interpretations, Implementations and Assessments. Nova Science Publ..
    The claim of the freedom of the will (understood as an individual who is transcendent to Nature) in the name of XXth century scientific knowledge, against the perspective of XVIIIth-XIXth century scientific materialism, is analysed and refuted in the present paper. The hypothesis of reductionism finds no obstacle within contemporary natural sciences. Determinism in classical physics is irrefutable, unless classical physics is itself refuted. From quantum mechanics, some authors argue that free will is possible because there is an ontological (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Free Will in Human Behavior and Physics.Vasil Penchev - 2020 - Labor and Social Relations 30 (6):185-196.
    If the concept of “free will” is reduced to that of “choice” all physical world shares the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly a certain goal, and the choice is only the mean, by which the aim can be achieved or not by the one who determines the target. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Versions of Determinism.Joseph Agassi - 2022 - Mεtascience: Scientific General Discourse 2:250-260.
    Karl Popper’s “Indeterminism in Quantum Physics and in Classical Physics” suffers unjust neglect. He judged determinism false: the future is open. In principle, replacing Laplace's variant of predetermination with predictable predetermination renders “scientific” determinism scientific and so refutable. Popper claimed that he had refuted it. Now a metaphysical system may have an extension—in the mathematical sense—that may render it explanatory and testable. If it exists, then it is not unique but has many alternative extensions. Popper’s proof is then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. A structural theory of everything.Brian D. Josephson - manuscript
    (v.3) In this paper it is argued that Barad's Agential Realism, an approach to quantum mechanics originating in the philosophy of Niels Bohr, can be the basis of a 'theory of everything' consistent with a proposal of Wheeler that 'observer-participancy is the foundation of everything'. On the one hand, agential realism can be grounded in models of self- organisation such as the hypercycles of Eigen, while on the other agential realism, by virtue of the 'discursive practices' that constitute one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Darwinism as a Theory for Finite Beings.Marcel Weber - 2005 - In Vittorio G. Hösle & Christian F. Illies (eds.), Darwinism and Philosophy. pp. 275-297.
    Darwin famously held that his use of the term "chance" in evolutionary theory merely "serves to acknowledge plainly our ignorance of the causes of each particular variation". Is this a tenable view today? Or should we revise our thinking about chance in evolution in light of the more advanced, quantitative models of Neo-Darwinian theory, which make substantial use of statistical reasoning and the concept of probability? Is determinism still a viable metaphysical doctrine about biological reality after the quantum revolution (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. “Facts of nature or products of reason? - Edgar Zilsel caught between ontological and epistemic conceptions of natural laws”.Donata Romizi - 2022 - In Donata Romizi, Monika Wulz & Elisabeth Nemeth (eds.), Edgar Zilsel: Philosopher, Historian, Sociologist. (Vienna Circle Institute Yearbook, vol. 27). Cham: Springer Nature.
    In this paper, I reconstruct the development and the complex character of Zilsel’s conception of scientific laws. This concept functions as a fil rouge for understanding Zilsel’s philosophy throughout different times (here, the focus is on his Viennese writings and how they pave the way to the more renown American ones) and across his many fields of work (from physics to politics). A good decade before Heisenberg’s uncertainty principle was going to mark the outbreak of indeterminism in quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. A deterministic model of the free will phenomenon.Mark Hadley - 2018 - Journal of Consciousness Exploration and Research 8 (1):1-19.
    The abstract concept of indeterministic free will is distinguished from the phenomenon of free will. Evidence for the abstract concept is examined and critically compared with various designs of automata. It is concluded that there is no evidence to support the abstract concept of indeterministic free will, it is inconceivable that a test could be constructed to distinguish an indeterministic agent from a complicated automaton. Testing the free will of an alien visitor is introduced to separate prejudices about who has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Variantes du déterminisme.Joseph Agassi - 2022 - Mεtascience: Discours Général Scientifique 2:293-304.
    L’article de Karl Popper « Indeterminism in Quantum Physics and in Classical Physics » est tombé injustement dans l’oubli. Popper jugeait le déterminisme faux : l’avenir est ouvert. En principe, remplacer la variante de Laplace de la pré-détermination par une prédétermination prévisible permet de rendre scienti-fique, donc réfutable, le déterminisme « scientifique ». Popper a affirmé qu’il l’avait réfuté. Maintenant, un système métaphysique peut avoir une extension – au sens mathématique – qui le rend explicatif et testable. Si (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Generalized Uncertainty Principle.Saurav Dwivedi - manuscript
    Quantum theory brought an irreducible lawlessness in physics. This is accompanied by lack of specification of state of a system. We can not measure states even though they ever existed. We can measure only transition from one state into another. We deduce this lack of determination of state mathematically, and thus provide formalism for maximum precision of determination of mixed states. However, the results thus obtained show consistency with Heisenberg's uncertainty relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Warum Gott nicht würfelt: Einstein und die Quantenmechanik im Licht neuerer Forschungen.Gregor Schiemann - 2010 - In R. Breuniger (ed.), Bausteine zur Philosophie. Bd. 27: Einstein.
    Zuerst werden die Argumente rekonstruiert, die dafür sprechen, Einsteins Wort, dass Gott nicht würfelt, als Ausdruck eines überholten deterministischen Weltbildes anzusehen. Anschließend werden Forschungsergebnisse der letzten Jahrzehnte benannt, die für eine Neubewertung seiner Position zur dominanten Interpretation der Quantenmechanik sprechen. Den Abschluß bildet die Diskussion der Möglichkeiten einer Reinterpretation seines Satzes vom nicht würfelnden Gott.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Freedom in a physical world – a partial taxonomy.Jude Arnout Durieux - manuscript
    If I take a free decision, how does this express itself physically? If God acts in this world, how does he do so? The answers to those two questions may be different or the same. Here we sketch a typology of possible answers, including Transcendent Compatibility. It turns out that in an open universe, freedom is the timewise mirror image of causality.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  45. Indeterministic intuitions and the Spinozan strategy.Andrew Kissel - 2018 - Mind and Language 33 (3):280-298.
    This article focuses on philosophical views that attempt to explain widespread belief in indeterministic choice by following a strategy that harkens back at least to Spinoza. According to this Spinozan strategy, people draw an inference from the absence of experiences of determined choice to the belief in indeterministic choice. Accounts of this kind are historically liable to overgeneralization. The pair of accounts defended in Shaun Nichols’ recent book, Bound: Essays on Free Will and Responsibility, are the most complete and empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  46. Indeterminism and pluralism in nature: From science to philosophy and theology.Claudia Vanney - 2014 - In Ignacio Alberto Silva (ed.), Latin American Perspectives on Science and Religion. London: Pickering & Chatto. pp. 135-146.
    The discussion of determinism/indeterminism in the natural world is not only a concern for epistemology and philosophy of science; it also has strong implications for natural theology. On the one hand, the distinction between determinism and predictability has led to deeper research into the relationship between ontological and gnoseological realms. On the other hand, the multiple descriptions proposed by contemporary science cannot avoid the question of the cognitive status of the various scientific formulations and the possibility of a coexistence (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  95
    Quantum Probability Amplitudes as Fractions of the Planck Frequency.Matheus P. Lobo - 2024 - Open Journal of Mathematics and Physics 6 (283).
    I conjecture that the probability amplitudes of a quantum state are fractions of the Planck frequency, stemming from the rich dynamics at the Planck scale. This offers a means to indirectly measure the fundamental properties of quantum spacetime and potentially resolves the measurement problem.
    Download  
     
    Export citation  
     
    Bookmark  
  48. How Quantum is Quantum Counterfactual Communication?Jonte R. Hance, James Ladyman & John Rarity - 2021 - Foundations of Physics 51 (1):1-17.
    Quantum Counterfactual Communication is the recently-proposed idea of using quantum physics to send messages between two parties, without any matter/energy transfer associated with the bits sent. While this has excited massive interest, both for potential ‘unhackable’ communication, and insight into the foundations of quantum mechanics, it has been asked whether this process is essentially quantum, or could be performed classically. We examine counterfactual communication, both classical and quantum, and show that the protocols proposed so far (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Quantum Theory, Objectification and Some Memories of Giovanni Morchio.Luca Sciortino - 2023 - In Alessandro Michelangeli & Andrea Cintio (eds.), Trails in Modern Theoretical and Mathematical Physics. Springer. pp. 301-310.
    In this contribution I will retrace the main stages of my research on the objectification problem in quantum mechanics by highlighting some personal memories of my supervisor, the theoretical physicist Giovanni Morchio. The central aim of my MSc thesis was to ask whether the hypothesis of objectification, which is currently added to the formalism, is not, at least in one case, deducible from it and in particular from the dynamics of the temporal evolution. The case study we were looking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Quantum ontology de-naturalized: What we can't learn from quantum mechanics.Raoni Arroyo & Jonas R. B. Arenhart - forthcoming - Theoria. An International Journal for Theory, History and Foundations of Science.
    Philosophers of science commonly connect ontology and science, stating that these disciplines maintain a two-way relationship: on the one hand, we can extract ontology from scientific theories; on the other hand, ontology provides the realistic content of our scientific theories. In this article, we will critically examine the process of naturalizing ontology, i.e., confining the work of ontologists merely to the task of pointing out which entities certain theories commit themselves to. We will use non-relativistic quantum mechanics as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 918