In his late years, Thomas Kuhn became interested in the process of scientific specialization, which does not seem to possess the destructive element that is characteristic of scientific revolutions. It therefore makes sense to investigate whether and how Kuhn’s insights about specialization are consistent with, and actually fit, his model of scientific progress through revolutions. In this paper, I argue that the transition toward a new specialty corresponds to a revolutionary change for the group of scientists involved (...) in such a transition. I will clarify the role of the scientific community in revolutionary changes and characterize the incommensurability across specialties as possessing both semantic and methodological aspects. The discussion of the discovery of the structure of DNA will serve both as an illustration of my main argument and as reply to one criticism raised against Kuhn—namely, that his model cannot capture cases of revolutionary yet non-disruptive episodes of scientific progress. Revisiting Kuhn’s ideas on specialization will shed new light on some often overlooked features of scientific change. (shrink)
Scientificrevolution has been one of the most controversial topics in the history and philosophy of science. Yet it has been no consensus on what is the best unit of analysis in the historiography of scientific revolutions. Nor is there a consensus on what best explains the nature of scientific revolutions. This chapter provides a critical examination of the historiography of scientific revolutions. It begins with a brief introduction to the historical development of the concept (...) of scientificrevolution, followed by an overview of the five main philosophical accounts of scientific revolutions. It then challenges two historiographical assumptions of the philosophical analyses of scientific revolutions. (shrink)
This chapter poses questions about the existence and character of the ScientificRevolution by deriving its initial categories of analysis and its initial understanding of the intellectual scene from the writings of the seventeenth century, and by following the evolution of these initial categories in succeeding centuries. This project fits the theme of cross cultural transmission and appropriation -- a theme of the present volume -- if one takes the notion of a culture broadly, so that, say, seventeenth (...) and eighteenth or nineteenth century European intellectual cultures are deemed sufficiently distinct that one can speak of the "transmission" of texts and ideas from the one to the other as cross cultural. I maintain that a process of transforming and assimilating seventeenth century achievements manifests itself in two distinct cultures of interpretation, one developed by historians of philosophy, the other by scientists and historians of science. The first, following actor's categories, interprets the revolution in the seventeenth century as a philosophical displacement, partly fomented by a radical change in astronomical theory; the second, retrospectively applying the post nineteenth century sense of the term "science" to seventeenth century events, finds a "scientific" revolution, or the birth of modern science. The chapter proposes interpreting the ScientificRevolution as a revolution in natural philosophy and metaphysics. (shrink)
Maxwellian electrodynamics genesis is considered in the light of the author’s theory change model previously tried on the Copernican and the Einstein revolutions. It is shown that in the case considered a genuine new theory is constructed as a result of the old pre-maxwellian programmes reconciliation: the electrodynamics of Ampere-Weber, the wave theory of Fresnel and Young and Faraday’s programme. The “neutral language” constructed for the comparison of the consequences of the theories from these programmes consisted in the language of (...) hydrodynamics with its rich content of analogous models ranging from the uncompressible fluid up to molecular vortices. The programmes’ meeting led to construction of the whole hierarchy of crossbred objects beginning from the displacement current and up to common hybrids. After that the interpenetration of the pre-maxwellian programmes began that marked the beginning of theoretical schemes of optics and electromagnetism unification. Maxwell’s programme did assimilate some ideas of the Ampere-Weber programme, as well as the presuppositions of the programmes of Fresnel and Faraday; and the significance of this fact for further methodology of scientific research programmes development is discussed. It is argued that the core of Maxwell’s unification strategy was formed by Kantian epistemology looked through the prism of William Whewell and such representatives of Scottish Enlightenment as Thomas Reid and William Hamilton. All these enabled Maxwell to start to unify not only optics and electromagnetism, but British and continental research traditions as well. Maxwell’s programme did supersede the Ampere-Weber one because Maxwell did put forward as a synthetic principle the idea, that differed from that of Ampere-Weber by its flexible and contra-ontological, strictly epistemological, Kantian character. For Maxwell, ether was not the last building block of physical reality, from which fields and charges should be constructed . “Action at a distance”, “incompressible fluid”, “molecular vortices” were only analogies for Maxwell, capable to direct the researcher on the “right” mathematical relations. From the “representational” point of view all this hydrodynamical models were doomed to failure efforts to describe what can not be described in principle – things in themselves, the “nature” of electrical and magnetic phenomena. On the contrary, Maxwell aimed his programme to find empirically meaningful mathematical relations between the electrodynamics basic objects, i.e. the creation of inter - coordinated electromagnetic field equations system. Namely the application of this epistemology enabled Hermann von Helmholtz and his pupil Heinrich Hertz to arrive at such a version of Maxwell’s theory that served a heuristical basis for the radiowaves discovery. (shrink)
It is exhibited that maxwellian electrodynamics grew out of the old pre-maxwellian programmes reconciliation: the electrodynamics of Ampere-Weber, the wave theory of Young-Fresnel and Faraday’s scientific research programme. The programmes’ meeting led to construction of the whole hierarchy of theoretical objects starting from the genuine crossbreeds (the displacement current) and up to usual mongrels. After the displacement current invention the interpenetration of the pre-maxwellian programmes began that marked the beginning of theoretical schemes of optics and electromagnetism real unification. Maxwell’s (...) programme did supersede its rivals because it had assimilated some ideas of the Ampere-Weber programme, as well as the presuppositions of the programmes of Young-Fresnel and Faraday. Maxwellian programme’s victory over its rivals became possible because the core of Maxwell’s unification strategy was formed by Kantian epistemology looked through the prism of William Whewell and such representatives of Scottish Enlightenment as Thomas Reid and William Hamilton. It was Kantian epistemology that enabled Hermann von Helmholtz and Heinrich Hertz to arrive at such a version of Maxwell’s theory that could serve a heuristical basis for the radio waves discovery. (shrink)
Do We Need a ScientificRevolution? (Published in the Journal of Biological Physics and Chemistry, vol. 8, no. 3, September 2008) Nicholas Maxwell (Emeritus Reader in Philosophy of Science at University College London) www.nick-maxwell.demon.co.uk Abstract Many see modern science as having serious defects, intellectual, social, moral. Few see this as having anything to do with the philosophy of science. I argue that many diverse ills of modern science are a consequence of the fact that the scientific community (...) has long accepted, and sought to implement, a bad philosophy of science, which I call standard empiricism. This holds that the basic intellectual aim is truth, the basic method being impartial assessment of claims to knowledge with respect to evidence. Standard empiricism is, however, untenable. Furthermore, the attempt to put it into scientific practice has many damaging consequences for science. The scientific community urgently needs to bring about a revolution in both the conception of science, and science itself. It needs to be acknowledged that the actual aims of science make metaphysical, value and political assumptions and are, as a result, deeply problematic. Science needs to try to improve its aims and methods as it proceeds. Standard empiricism needs to be rejected, and the more rigorous philosophy of science of aim-oriented empiricism needs to be adopted and explicitly implemented in scientific practice instead. The outcome would be the emergence of a new kind of science, of greater value in both intellectual and humanitarian terms. (shrink)
What are the reasons of the second scientificrevolution that happened at the beginning of the XX century? Why did the new physics supersede the old one? The author tries to answer the subtle questions with a help of the epistemological model of scientific revolutions that takes into account some recent advances in philosophy, sociology and history of science. According to the model, Einstein’s Revolution took place due to resolution of deep contradictions between the basic classical (...) research traditions: Newtonian mechanics, maxwellian electrodynamics, thermodynamics and statistical mechanics. As a result, two new research programmes – relativistic and quantum- had been constructed. It was the interaction between them that formed the interdisciplinary context of Einstein’s Revolution. (shrink)
In this book, Nugayev makes a clear case against Kuhnian and Lakatosian models. For him the origin of scientific revolutions lies in the clash of theories which are already mature and have triumphed in their respective spheres of action.
Just before the ScientificRevolution, there was a "Mathematical Revolution", heavily based on geometrical and machine diagrams. The "faculty of imagination" (now called scientific visualization) was developed to allow 3D understanding of planetary motion, human anatomy and the workings of machines. 1543 saw the publication of the heavily geometrical work of Copernicus and Vesalius, as well as the first Italian translation of Euclid.
Critically growing problems of fundamental science organisation and content are analysed with examples from physics and emerging interdisciplinary fields. Their origin is specified and new science structure (organisation and content) is proposed as a unified solution.
Do the changes that have taken place in the structures and methods of the production of scientific knowledge and in our understanding of science over the past fifty years justify speaking of an epochal break in the development of science? Gregor Schiemann addresses this issues through the notion of a scientificrevolution and claims that at present we are not witnessing a new scientificrevolution. Instead, Schiemann argues that after the so-called ScientificRevolution (...) in the sixteenth and seventeenth centuries, a caesura occurred in the course of the nineteenth century that constituted a departure from the early modern origins of science. This change was characterized by the loss of certainty on the part of the scientists, by the steadily increasing importance of scientific communities (rather than individuals), and by the systematic intertwinement of scientific and societal development. As to present science, Schiemann admits that important changes have occurred, but he denies the conflation of nature and culture: even the OncoMouse is a natural organism, though a seriously damaged one. (shrink)
Several recent works in history and philosophy of science have re-evaluated the alleged opposition between the theses put forth by logical empiricists such as Carnap and the so-called "post-positivists", such as Kuhn. Although the latter came to be viewed as having seriously challenged the logical positivist views of science, recent authors (e.g., Friedman, Reisch, Earman, Irzik and Grünberg) maintain that some of the most notable theses of the Kuhnian view of science have striking similarities with some aspects of Carnap's philosophy. (...) Against that reading, Oliveira and Psillos argue that within Carnap's philosophy there is no place for the Kuhnian theses of incommensurability, holism, and theory-ladenness of observations. This paper presents each of those readings and argues that Carnap and Kuhn have non-opposing views on holism, incommensurability, the theory-ladenness of observations, and scientific revolutions. We note at the very end - without dwelling on the point, however - that they come apart on other matters, such as their views on metaphysics and on the context of discovery/justification distinction. (shrink)
By briefly reviewing three well-known scientific revolutions in fundamental physics (the discovery of inertia, of special relativity and of general relativity), I claim that problems that were supposed to be crying for a dynamical explanation in the old paradigm ended up receiving a structural explanation in the new one. This claim is meant to give more substance to Kuhn’s view that revolutions are accompanied by a shift in what needs to be explained, while suggesting at the same time the (...) existence of a pattern that is common to all of the discussed case-studies. It remains to be seen whether also quantum mechanics, in particular entanglement, conforms to this pattern. (shrink)
Important to Kuhn's account of scientific change is the observation that when paradigms are in competition with one another, there is a curious breakdown of rational argument and communication between adherents of competing programs. He attributed this to the fact that competing paradigms are incommensurable. The incommensurability thesis centrally involves the claim that there is a deep conceptual gap between competing paradigms in science. In this paper I argue that in one important case of competing paradigms, the Aristotelian explanation (...) of the properties of bodies in terms of matter and form as opposed to the Cartesian mechanist paradigm, where the properties of bodies are explained on the model of machines, there was no such conceptual gap: the notion of a machine was as fully intelligible on the Aristotelian paradigm as it was on the Cartesian. But this does not mean that the debate between the two sides was conducted on purely rational terms. Rational argument breaks down not because of Kuhnian incommensurability, I argue, but because of other cultural factors separating the two camps. (shrink)
Well prior to the invention of the term ‘biology’ in the early 1800s by Lamarck and Treviranus, and also prior to the appearance of terms such as ‘organism’ under the pen of Leibniz in the early 1700s, the question of ‘Life’, that is, the status of living organisms within the broader physico-mechanical universe, agitated different corners of the European intellectual scene. From modern Epicureanism to medical Newtonianism, from Stahlian animism to the discourse on the ‘animal economy’ in vitalist medicine, models (...) of living being were constructed in opposition to ‘merely anatomical’, structural, mechanical models. It is therefore curious to turn to the ‘passion play’ of the ScientificRevolution – whether in its early, canonical definitions or its more recent, hybridized, reconstructed and expanded versions: from Koyré to Biagioli, from Merton to Shapin – and find there a conspicuous absence of worry over what status to grant living beings in a newly physicalized universe. Neither Harvey, nor Boyle, nor Locke (to name some likely candidates, the latter having studied with Willis and collaborated with Sydenham) ever ask what makes organisms unique, or conversely, what does not. In this paper I seek to establish how ‘Life’ became a source of contention in early modern thought, and how the ScientificRevolution missed the controversy. (shrink)
In various documents the view emerges that contemporary biotechnosciences are currently experiencing a scientificrevolution: a massive increase of pace, scale and scope. A significant part of the research endeavours involved in this scientific upheaval is devoted to understanding and, if possible, ameliorating humankind: from our genomes up to our bodies and brains. New developments in contemporary technosciences, such as synthetic biology and other genomics and “post-genomics” fields, tend to blur the distinctions between prevention, therapy and enhancement. (...) An important dimension of this development is “biomimesis”: i.e. the tendency of novel technologies and materials to mimic or plagiarize nature on a molecular and microscopic level in order to optimise prospects for the embedding of technological artefacts in natural systems such as human bodies and brains. In this paper, these developments are read and assessed from a psychoanalytical perspective. Three key concepts from psychoanalysis are used to come to terms with what is happening in research laboratories today. After assessing the general profile of the current revolution in this manner, I will focus on a particular case study, a line of research that may serve as exemplification of the vicissitudes of contemporary technosciences, namely viral biomaterials. Viral life forms can be genetically modified (their genomes can be rewritten) in such a manner that they may be inserted in human bodies in order to produce substances at specific sites such as hormones (testosterone), neurotransmitters (dopamine), enzymes (insulin) or bone and muscle tissue. Notably, certain target groups such as top athletes, soldiers or patients suffering from degenerative diseases may become the pioneers serving as research subjects for novel applications. The same technologies can be used for various purposes ranging from therapy up to prevention and enhancement. (shrink)
Working from within the Lakatosian framework of scientific change, this paper seeks to gain a deeper understanding of the Jesuits’ role in the scientificrevolution during the years of Galileo’s trials and the subsequent century. Their received research program was Aristotelian cosmology. Their efforts to construct protective belts to shield the core principles were fueled not only by the basic instinct to conserve but also by the impact of official prohibitions from the side of Church authorities. The (...) paper illustrates how these Church restrictions were not as paralyzing for Jesuit intellectuals as has often been thought. They left considerable space for maneuvering. The paper shows how, within this space, Jesuits were engaged mainly in the indispensable task of exhausting all the potential of Aristotelian cosmology. They did this primarily by trying to build intellectual bridges to ensure coherence between three realms of the cosmological imagination of the time: the received Aristotelian view, the new empirical data, and the realm of everyday experience. (shrink)
Dr. Strange sees Dr. Stephen Strange abandon his once-promising medical career to become a superhero with the ability to warp time and space, and to travel through various dimensions. In order to make this transition, he is required to abandon many of his previous assumptions about the way the world works and learn to see things in a new way. Importantly, this is not merely a matter of learning a few facts, or of mastering new techniques. Instead, Dr. Strange is (...) required to alter his conception of the basic nature of the world and of how he relates to it. In time, this change extends to his values as well, as Strange comes to embrace his role in safeguarding the human world from interdimensional threats. -/- It is tempting to interpret Dr. Strange’s experience as one that shows the limits of rational, scientific inquiry, or even of human knowledge more generally. However, in this essay, I’d like to explore a different interpretation: that Strange’s experience can most fruitfully be thought of as a scientificrevolution, in which Strange moves from one way of carrying out scientific inquiry to a different, incompatible way of doing it. In order to do this, I’ll be exploring the work of philosopher and historian of science Thomas Kuhn, who wrote a book—The Structure of Scientific Revolutions--about just this topic. Among other things, Kuhn’s work introduced the highly useful (though commonly misunderstood) notion of a paradigm shift. -/- We’ll begin by exploring what Kuhn describes as normal science, which consists of applying a set of well-understood concepts and methods to problems of interest. This “puzzle-solving” aspect of science is exemplified by Strange’s early successes in medicine. During this stage, scientists have good reasons to avoid questioning the basic validity of their paradigm, and to instead blame any problems that arise on other factors, such as human error. (As fans will know, Strange is quite good at assigning blame in just this way.) A crisis only occurs when significant, serious anomalies have accrued, such as those that Strange encounters in the aftermath of his accident. Even then, however, the old paradigm will only be abandoned only if a new paradigm can be found. Again, Strange’s experience bears this out, as he is able to move on only when the Sorcerer Supreme introduces him to the Mystic Arts. -/- Along the way, we’ll consider what it means for a practice to count as a scientific paradigm, and why it’s not just “anything goes.” Among other things, a paradigm requires that practitioners agree on which problems are most important, which techniques are appropriate to which problems, and what exemplary models of successful work look like. The Mystic Arts of Strange’s world, unlike the pseudoscientific theories of our own, plausibly do quite well on these sorts of criteria. (shrink)
My essay will be divided as follows: -/- #1 Analysis of Thomas Kuhn's notion of scientific revolutions; #2 Critical soft spots found in both Kuhn and Polanyi; #3 How Polanyi can enrich Kuhn's description of scientific discoveries.
To comprehend the special relativity genesis, one should unfold Einstein’s activities in quantum theory first . His victory upon Lorentz’s approach can only be understood in the wider context of a general programme of unification of classical mechanics and classical electrodynamics, with relativity and quantum theory being merely its subprogrammes. Because of the lack of quantum facets in Lorentz’s theory, Einstein’s programme, which seems to surpass the Lorentz’s one, was widely accepted as soon as quantum theory became a recognized part (...) of physics. A new approach to special relativity genesis enables to broaden the bothering “Trinity” group of its creators to include Gilbert N. Lewis. Notwithstanding that the links necessarily existing between all the 1905 papers were obscured by Einstein himself due to the reasons discussed below, Lewis revealed from the very beginning the connections between special relativity and quasi-corpuscular theory of light, as he punctuated: “The consequences which one of us obtained from a simple assumption as to the mass of a beam of light, and the fundamental conservation of mass, energy and momentum, Einstein has derived from the principle of relativity and the electromagnetic theory” (Lewis G.N.& Tolman R.C. “The Principle of Relativity and Non-Newtonian Mechanics”, Philosophical Magazine, 1908). (shrink)
History has been disparaged since the late 19th century for not conforming to norms of scientific explanation. Nonetheless, as a matter of fact a work of history upends the regnant philosophical conception of science in the second part of the 20th century. Yet despite its impact, Kuhn’s Structure has failed to motivate philosophers to ponder why works of history should be capable of exerting rational influence on an understanding of philosophy of science. But all this constitutes a great irony (...) and a mystery. The mystery consists of the persistence of a complete lack of interest in efforts to theorize historical explanation. Fundamental questions regarding why an historical account could have any rational influence remain not merely unanswered, but unasked. The irony arises from the fact that analytic philosophy of history went into an eclipse where it remains until this day just around the time that the influence of Kuhn’s great work began to make itself felt. This paper highlights puzzles long ignored regarding the challenges a work of history managed to pose to the epistemic authority of science, and what this might imply generally for the place of philosophy of history vis-à-vis the problems of philosophy. (shrink)
This summary of the original paradigm of the universal science of complexity starts with the discovered exact origin of the stagnating "end" of conventional, unitary science paradigm and development traditionally presented by its own estimates as the only and the best possible kind of scientific knowledge. Using a transparent generalisation of the exact mathematical formalism of arbitrary interaction process, we show that unitary science approach and description, including its imitations of complexity and chaoticity, correspond to artificial and ultimately strong (...) reduction of the natural plurality of unreduced interaction results called realisations to a single, "average" or "exact", realisation. This severe reduction of the natural world dynamics in unitary science underlies all its unsolvable "mysteries" and "paradoxes", persisting "difficult problems", and finally the modern "end" of the progress of just that, actually very special kind of knowledge, whose irreducible limits lead to the modern deep crisis of the global civilisation development. We show then how the rigorously substantiated restoration of the full richness of real-world dynamics within the intrinsically unified knowledge of the universal science of complexity provides not only the causally complete solution to the old and new problems of unitary science but opens practically unlimited possibilities for the new progress of science and civilisation as a result of this crucial extension, which we call complexity revolution. The unreduced analysis of the universal complexity science shows that at the current critical bifurcation point of development, we have only two incompatible possibilities and emerging tendencies, either the dangerously growing degradation within the dominating unitary science and thinking limits (irrespective of purely empirical technology power becoming even dangerous here) or the new golden age of scientific discoveries and civilisation progress with the qualitatively extended approach and results of unreduced complexity science and the new thinking it implies. (shrink)
In a number of papers and in his recent book, Is Water H₂O? Evidence, Realism, Pluralism (2012), Hasok Chang has argued that the correct interpretation of the Chemical Revolution provides a strong case for the view that progress in science is served by maintaining several incommensurable “systems of practice” in the same discipline, and concerning the same region of nature. This paper is a critical discussion of Chang's reading of the Chemical Revolution. It seeks to establish, first, that (...) Chang's assessment of Lavoisier's and Priestley's work and character follows the phlogistonists' “actors' sociology”; second, that Chang simplifies late-eighteenth-century chemical debates by reducing them to an alleged conflict between two systems of practice; third, that Chang's evidence for a slow transition from phlogistonist theory to oxygen theory is not strong; and fourth, that he is wrong to assume that chemists at the time did not have overwhelming good reasons to favour Lavoisier's over the phlogistonists' views. (shrink)
What were the reasons of the Copernican Revolution ? How did modern science (created by a bunch of ambitious intellectuals) manage to force out the old one created by Aristotle and Ptolemy, rooted in millennial traditions and strongly supported by the Church? What deep internal causes and strong social movements took part in the genesis, development and victory of modern science? The author comes to a new picture of Copernican Revolution on the basis of the elaborated model of (...)scientific revolutions that takes into account some recent advances in philosophy, sociology and history of science. The model was initially invented to describe Einstein’s Revolution of the XX century beginning. The model considers the growth of knowledge as interaction, interpenetration and unification of the research programmes, springing out of different cultural traditions. Thus, Copernican Revolution appears as a result of revealation and (partial) resolution of the dualism , of the gap between Ptolemy’s mathematical astronomy and Aristotelian qualitative physics. The works of Copernicus, Galileo, Kepler and Newton were all the stages of mathematics descendance from skies to earth and reciprocal extrapolation of earth physics on skies. The model elaborated enables to reassess the role of some social factors crucial for the scientificrevolution. It is argued that initially modern science was a result of the development of Christian Weltanschaugung . Later the main support came from the absolute monarchies. In the long run the creators of modern science appeared to be the “apparatchics” of the “regime of truth” built-in state machine. Natural science became a part of ideological state apparatus providing not only scientific education but the internalization of values crucial for the functioning of state. -/- . (shrink)
Contemporary interdisciplinary research is often described as bringing some important changes in the structure and aims of the scientific enterprise. Sometimes, it is even characterized as a sort of Kuhnian scientificrevolution. In this paper, the analogy between interdisciplinarity and scientific revolutions will be analysed. It will be suggested that the way in which interdisciplinarity is promoted looks similar to how new paradigms were described and defended in some episodes of revolutionary scientific change. However, contrary (...) to what happens during some scientific revolutions, the rhetoric with which interdisciplinarity is promoted does not seem to be accompanied by a strong agreement about what interdisciplinarity actually is. In the end, contemporary interdisciplinarity could be defined as being in a ‘pre-paradigmatic’ phase, with the very talk promoting interdisciplinarity being a possible obstacle to its maturity. (shrink)
John Searle offers what he thinks to be a reasonable scientific approach to the understanding of consciousness. I argue that Searle is demanding nothing less than a Kuhnian-type revolution with respect to how scientists should study consciousness given his rejection of the subject-object distinction and affirmation of mental causation. As part of my analysis, I reveal that Searle embraces a version of emergentism that is in tension, not only with his own account, but also with some of the (...) theoretical tenets of science. I conclude that Searle has offered little to motivate scientists to adopt his proposal. (shrink)
This paper challenges premises regarding the ‘Kuhn vs Popper debate’ which is often introduced to students at a university level. Though I acknowledge the disagreements between Kuhn and Popper, I argue that their models of science are greatly similar. To begin, some preliminary context is given to point out conceptual and terminological barriers within this debate. The remainder of paper illuminates consistencies between the influential books The Logic of Scientific Discoveries (by Popper, abbreviated as Logic) and The Structure of (...)Scientific Revolutions (by Kuhn, abbreviated as Structure). The central purpose of this comparison is to synthesize a shared model of scientific change. The broader implication of this approach is appreciating common ground in discussions that are defined by their disagreements (particularly in philosophy of science). (shrink)
The monograph is aimed at an analysis of the reasons for theory change in science. The writer develops a model of theory change according to which the origins of scientific revolutions lie not in a clash of fundamental theories with facts, but of ‘old’ fundamental theories with each other.
Incommensurability was Kuhn’s worst mistake. If it is to be found anywhere in science, it would be in physics. But revolutions in theoretical physics all embody theoretical unification. Far from obliterating the idea that there is a persisting theoretical idea in physics, revolutions do just the opposite: they all actually exemplify the persisting idea of underlying unity. Furthermore, persistent acceptance of unifying theories in physics when empirically more successful disunified rivals can always be concocted means that physics makes a persistent (...) implicit assumption concerning unity. To put it in Kuhnian terms, underlying unity is a paradigm for paradigms. We need a conception of science which represents problematic assumptions concerning the physical comprehensibility and knowability of the universe in the form of a hierarchy, these assumptions becoming less and less substantial and more and more such that their truth is required for science, or the pursuit of knowledge, to be possible at all, as one goes up the hierarchy. This hierarchical conception of science has important Kuhnian features, but also differs dramatically from the view Kuhn expounds in his The Structure of Scientific Revolutions. In this paper, I compare and contrast these two views in a much more detailed way than has been done hitherto. I show how the hierarchical view can be construed to emerge from Kuhn’s view as it is modified to overcome objections. I argue that the hierarchical conception of science is to be preferred to Kuhn’s view. (shrink)
Press release. -/- The ebook entitled, Einstein’s Revolution: A Study of Theory-Unification, gives students of physics and philosophy, and general readers, an epistemological insight into the genesis of Einstein’s special relativity and its further unification with other theories, that ended well by the construction of general relativity. The book was developed by Rinat Nugayev who graduated from Kazan State University relativity department and got his M.Sci at Moscow State University department of philosophy of science and Ph.D at Moscow Institute (...) of Philosophy, Russian Academy of Science. He has forty years of philosophy of science and relativistic astrophysics teaching and research experience evincing in more than 200 papers in the scientific journals of Russia, Ukraine, Belorussia, USA, Great Britain, Germany, Spain, Italy, Sweden, Switzerland, Netherlands, Canada, Denmark, Poland, Romania, France, Greece, Japan and some other countries, and 8 monographs. Revolutions in physics all embody theoretical unification. Hence the overall aim of the present book is to unfold Einstein’s unificationist modus operandi, the hallmarks of actual Einstein’s methodology of unification that engendered his 1905 special relativity, as well as his 1915 general relativity. To achieve the object, a lucid epistemic model is exposed aimed at an analysis of the reasons for mature theory change in science (chapter1). According to the model, scientific revolutions were not due to fanciful creation of new ideas ‘ex nihilo’, but rather to the long-term processes of the reconciliation, interpenetration and intertwinement of ‘old’ research traditions preceding such breaks .Accordingly, origins of scientific revolutions lie not in a clash of fundamental theories with facts, but of “old” mature research traditions with each other, leading to contradictions that can only be attenuated in a more general theoretical approach. In chapter 2 it is contended that Einstein’s ingenious approach to special relativity creation, substantially distinguishing him from Lorentz’s and Poincaré’s invaluable impacts, turns to be a milestone of maxwellian electrodynamics, statistical mechanics and thermodynamics reconciliation design. Special relativity turns out to be grounded on Einstein’s breakthrough 1905 light quantum hypothesis. Eventually the author amends the received view on the general relativity genesis by stressing that the main reason for Einstein’s victory over the rival programmes of Abraham and Nordström was a unificationist character of Einstein’s research programme (chapter 3). Rinat M. Nugayev, Ph.D, professor of Volga Region Academy, Kazan, the Republic of Tatarstan, the Russian Federation. (shrink)
There is a need to bring about a revolution in the philosophy of science, interpreted to be both the academic discipline, and the official view of the aims and methods of science upheld by the scientific community. At present both are dominated by the view that in science theories are chosen on the basis of empirical considerations alone, nothing being permanently accepted as a part of scientific knowledge independently of evidence. Biasing choice of theory in the direction (...) of simplicity, unity or explanatory power does not permanently commit science to the thesis that nature is simple or unified. This current ‘paradigm’ is, I argue, untenable. We need a new paradigm, which acknowledges that science makes a hierarchy of metaphysical assumptions concerning the comprehensibility and knowability of the universe, theories being chosen partly on the basis of compatibility with these assumptions. Eleven arguments are given for favouring this new ‘paradigm’ over the current one. (shrink)
This essay explores the benefits of utilizing non-scientific examples and analogies in teaching philosophy of science courses. These examples can help resolve two basic difficulties faced by most instructors, especially when teaching lower-level courses: first, they can prompt students to take an active interest in the class material, since the examples will involve aspects of the culture well-known, or at least more interesting, to the students; and second, these familiar, less-threatening examples will lessen the students' collective anxieties and open (...) them up to learning the material more easily. To demonstrate this strategy of constructing and employing non-scientific examples, a lengthy analogy between musical styles and Kuhn's theory of scientific revolutions is developed. (shrink)
The scientific community takes for granted a view of science that may be called standard empiricism. This holds that the basic intellectual aim of science is truth, nothing being presupposed about the truth, the basic method being to assess theories with respect to evidence. A basic tenet of the view is that science must not accept any thesis about the world as a part of scientific knowledge independent of evidence, let alone in violation of evidence. But physics only (...) accepts unified theories, and persistently rejects infinitely many ad hoc rivals that fit the phenomena even better. In persistently rejecting these infinitely many empirically more successful rival theories, physics thereby makes a substantial assumption about the universe – it is such that all ad hoc theories are false – an assumption that is accepted implicitly independently of evidence, even in a sense against the evidence. That contradicts standard empiricism. The scientific community needs to adopt a new conception of science that represents the assumption of physics as a hierarchy of assumptions, thus facilitating the improvement of the assumption that is made, as science proceeds. (shrink)
From the ScientificRevolution to the present era, the natural sciences have developed remarkably and recorded colossal success in different areas such as genetic engineering, cloning, hybrid technology, health and food technologies, space travel, audio-visual technology, among others. These evidences are indications of the growth of scientific knowledge. Accordingly, this paper raises the question of what is responsible for the growth of scientific knowledge. Inherent in this question is the pool of diverse conceptions of what the (...) nature and method of science is. Consequently, some significant contours in the construct of the problem of demarcation will be imported into this discourse as a means of assembling some pivotal conceptions of the growth of scientific knowledge. With this, the paper aims to consider Karl Popper’s fundamental conception of the growth of scientific knowledge and its associated criticisms, and from it, attempt to respond to the question of what is responsible for the growth of scientific knowledge. This will help to eliminate the confusion and complications surrounding the growth of scientific knowledge. (shrink)
Science and scientific knowledge have been questioned in many ways for a long period of time. Especially, after the scientificrevolution of 16th- and 17th-century Europe, science and its knowledge have been mainly accepted one of the most valuable and trustable information. However, in 20th century, autonomy of scientific knowledge and its dominant position over other kinds of knowledge have been mainly criticised. Social and other factors that were tried to be excluded before have been incorporated (...) into the work by the influence of the Strong Programme. In this article, it will be argued that while people are presenting scientific knowledge, their interests, beliefs and the communities they are involved in are also shown to be effective in producing this information. Thus, the desired result is that it is not reasonable to talk about the absolute autonomy of scientific knowledge. (shrink)
This book argues for the need to put into practice a profound and comprehensive intellectual revolution, affecting to a greater or lesser extent all branches of scientific and technological research, scholarship and education. This intellectual revolution differs, however, from the now familiar kind of scientificrevolution described by Kuhn. It does not primarily involve a radical change in what we take to be knowledge about some aspect of the world, a change of paradigm. Rather it (...) involves a radical change in the fundamental, overall intellectual aims and methods of inquiry. At present inquiry is devoted to the enhancement of knowledge. This needs to be transformed into a kind of rational inquiry having as its basic aim to enhance personal and social wisdom. This new kind of inquiry gives intellectual priority to the personal and social problems we encounter in our lives as we strive to realize what is desirable and of value – problems of knowledge and technology being intellectually subordinate and secondary. For this new kind of inquiry, it is what we do and what we are that ultimately matters: our knowledge is but an aspect of our life and being. (shrink)
In an often-forgotten proclamation during an autobiographical interview in 1995, Thomas Kuhn notes, without much explanation, his indebtedness to psychoanalysis. While in the wake of Kuhn's 1962 publication The Structure of Scientific Revolutions, many psychoanalytic scholars have made use of his work to justify shifts in psychoanalytic traditions, few have attempted to point out the relation between Kuhnian science and the psychoanalytic process. This article argues that there is a strong affinity between the developmental and structural themes of Kuhn’s (...)scientific revolutions with that of the psychic restructuring that occurs in the psychoanalytic process. Furthermore, these affinities represent the lasting effects that psychoanalysis had on a young Kuhn. Utilizing the metapsychology of psychoanalyst Hans Loewald to highlight the theoretical underpinnings of Kuhn’s debt to the psychoanalytic experience, while also paying close attention to Kuhn’s discussions on resistance in science and his open-systems notion of individual and world, the author argues that we will learn how psychoanalysis, through Kuhn's own psychoanalytic treatment, revolutionized science. (shrink)
From Knowledge to Wisdom argues that there is an urgent need, for both intellectual and humanitarian reasons, to bring about a revolution in science and the humanities. The outcome would be a kind of academic inquiry rationally devoted to helping humanity learn how to create a better world. Instead of giving priority to solving problems of knowledge, as at present, academia would devote itself to helping us solve our immense, current global problems – climate change, war, poverty, population growth, (...) pollution... of sea, earth and air, destruction of natural habitats and rapid extinction of species, injustice, tyranny, proliferation of armaments, conventional, chemical, biological and nuclear, depletion of natural resources. The basic intellectual aim of inquiry would be to seek and promote wisdom – wisdom being the capacity to realize what is of value in life for oneself and others, thus including knowledge and technological know-how, but much else besides. This second edition has been revised throughout, has additional material, a new introduction and three new chapters. (shrink)
We outline a framework of multilevel neurocognitive mechanisms that incorporates representation and computation. We argue that paradigmatic explanations in cognitive neuroscience fit this framework and thus that cognitive neuroscience constitutes a revolutionary break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations aim to be mechanistic through and through. Neurocognitive explanations aim to integrate computational and representational functions and structures across multiple levels of organization in order to (...) explain cognition. To a large extent, practicing cognitive neuroscientists have already accepted this shift, but philosophical theory has not fully acknowledged and appreciated its significance. As a result, the explanatory framework underlying cognitive neuroscience has remained largely implicit. We explicate this framework and demonstrate its contrast with previous approaches. (shrink)
Background: In the context of globalization, Vietnamese universities, whose primary function is teaching, there is a need to improve research performance. Methods: Based on SSHPA data, an exclusive database of Vietnamese social sciences and humanities researchers’ productivity, between 2008 and 2019 period, this study analyzes the research output of Vietnamese universities in the field of social sciences and humanities. Results: Vietnamese universities have been steadily producing a high volume of publications in the 2008-2019 period, with a peak of 598 articles (...) in 2019. Moreover, many private universities and institutions are also joining the publication race, pushing competitiveness in the country. Conclusions: Solutions to improve both quantity and quality of Vietnamese universities’ research practice in the context of the industrial revolution 4.0 could be applying international criteria in Vietnamese higher education, developing scientific and critical thinking for general and STEM education, and promoting science communication. (shrink)
In his book “Reconstruction of Scientific Change” R.M. Nugayev proposes a new model of theory change by analyzing the reasons for theory change in science. Nugayev’s theoretical concept is based on a realist’s philosophical attitude. The most important notions of Nugayev’ s conception of theory change are “theories’ cross” and “crossbred objects”, which he takes from the terminology of other Russian philosophers of science (Bransky, Podgoretzky, Smorodinsky). His investigations often refer to several famous Western philosophers. Yet his study is (...) not free of some drawbacks. Nevertheless, Nugayev’s book is worth reading and discussing within the current debate about the structure of scientificrevolution and theory changes. (shrink)
The central thesis of this book is that we need to reform philosophy and join it to science to recreate a modern version of natural philosophy; we need to do this in the interests of rigour, intellectual honesty, and so that science may serve the best interests of humanity. Modern science began as natural philosophy. In the time of Newton, what we call science and philosophy today – the disparate endeavours – formed one mutually interacting, integrated endeavour of natural philosophy: (...) to improve our knowledge and understanding of the universe, and to improve our understanding of ourselves as a part of it. Profound discoveries were made, indeed one should say unprecedented discoveries. It was a time of quite astonishing intellectual excitement and achievement. And then natural philosophy died. It split into science on the one hand, and philosophy on the other. This happened during the 18th and 19th centuries, and the split is now built into our intellectual landscape. But the two fragments, science and philosophy, are defective shadows of the glorious unified endeavour of natural philosophy. Rigour, sheer intellectual good sense and decisive argument demand that we put the two together again, and rediscover the immense merits of the integrated enterprise of natural philosophy. This requires an intellectual revolution, with dramatic implications for how we understand our world, how we understand and do science, and how we understand and do philosophy. There are dramatic implications, too, for education. And it does not stop there. For, as I show in the final chapter, resurrected natural philosophy has dramatic, indeed revolutionary methodological implications for social science and the humanities, indeed for the whole academic enterprise. It means academic inquiry needs to be reorganized so that it comes to take, as its basic task, to seek and promote wisdom by rational means, wisdom being the capacity to realize what is of value in life, for oneself and others, thus including knowledge, technological know-how and understanding, but much else besides. The outcome is institutions of learning rationally designed and devoted to helping us tackle our immense global problems in increasingly cooperatively rational ways, thus helping us make progress towards a good world – or at least as good a world as possible. (shrink)
Universities today betray both reason and humanity. They are still dominated by the idea, inherited from the past, that the best way the academic enterprise can help promote human welfare is, in the first instance, to pursue the intellectual aim of acquiring knowledge. First, knowledge and technological know-how are to be acquired; then, secondarily, they can be applied to help solve social problems. But academic inquiry conducted in this way – knowledge-inquiry as it may be called – violates the most (...) elementary rules of reason that one can think of and, as a result, betrays the interests of humanity. We need a revolution in academia, one which puts problems of living at the heart of academic inquiry, and takes the basic aim to be to seek and promote wisdom, construed to be the capacity to realize what is of value in life, for oneself and others, thus including knowledge, but much else besides. (shrink)
Scientific knowledge is not merely a matter of reconciling theories and laws with data and observations. Science presupposes a number of metatheoretic shaping principles in order to judge good methods and theories from bad. Some of these principles are metaphysical and some are methodological. While many shaping principles have endured since the scientificrevolution, others have changed in response to conceptual pressures both from within science and without. Many of them have theistic roots. For example, the notion (...) that nature conforms to mathematical laws flows directly from the early modern presupposition that there is a divine Lawgiver. This interplay between theism and shaping principles is often unappreciated in discussions about the relation between science and religion. Today, of course, naturalists reject the influence of theism and prefer to do science on their terms. But as Robert Koons and Alvin Plantinga have argued, this is more difficult than is typically assumed. In particular, they argue, metaphysical naturalism is in conflict with several metatheoretic shaping principles, especially explanatory virtues such as simplicity and with scientific realism more broadly. These arguments will be discussed as well as possible responses. In the end, theism is able to provide justification for the philosophical foundations of science that naturalism cannot. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.