Results for 'Supertask'

8 found
Order:
  1. The Infinity From Nothing Paradox and the Immovable Object Meets the Irresistible Force.Nicholas Shackel - 2018 - European Journal for Philosophy of Science 8 (3):417-433.
    In this paper I present a novel supertask in a Newtonian universe that destroys and creates infinite masses and energies, showing thereby that we can have infinite indeterminism. Previous supertasks have managed only to destroy or create finite masses and energies, thereby giving cases of only finite indeterminism. In the Nothing from Infinity paradox we will see an infinitude of finite masses and an infinitude of energy disappear entirely, and do so despite the conservation of energy in all collisions. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. The Cantorian Bubble.Jeremy Gwiazda - manuscript
    The purpose of this paper is to suggest that we are in the midst of a Cantorian bubble, just as, for example, there was a dot com bubble in the late 1990’s.
    Download  
     
    Export citation  
     
    Bookmark  
  3. On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Supermachines and Superminds.Eric Steinhart - 2003 - Minds and Machines 13 (1):155-186.
    If the computational theory of mind is right, then minds are realized by machines. There is an ordered complexity hierarchy of machines. Some finite machines realize finitely complex minds; some Turing machines realize potentially infinitely complex minds. There are many logically possible machines whose powers exceed the Church–Turing limit (e.g. accelerating Turing machines). Some of these supermachines realize superminds. Superminds perform cognitive supertasks. Their thoughts are formed in infinitary languages. They perceive and manipulate the infinite detail of fractal objects. They (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Surreal Time and Ultratasks.Haidar Al-Dhalimy & Charles J. Geyer - 2016 - Review of Symbolic Logic 9 (4):836-847.
    This paper suggests that time could have a much richer mathematical structure than that of the real numbers. Clark & Read (1984) argue that a hypertask (uncountably many tasks done in a finite length of time) cannot be performed. Assuming that time takes values in the real numbers, we give a trivial proof of this. If we instead take the surreal numbers as a model of time, then not only are hypertasks possible but so is an ultratask (a sequence which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. The Collapse of Supertasks.Gustavo E. Romero - 2014 - Foundations of Science 19 (2):209-216.
    A supertask consists in the performance of an infinite number of actions in a finite time. I show that any attempt to carry out a supertask will produce a divergence of the curvature of spacetime, resulting in the formation of a black hole. I maintain that supertaks, contrarily to a popular view among philosophers, are physically impossible. Supertasks, literally, collapse under their own weight.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7.  36
    Infinitely Complex Machines.Eric Steinhart - 2007 - In Intelligent Computing Everywhere. Springer. pp. 25-43.
    Infinite machines (IMs) can do supertasks. A supertask is an infinite series of operations done in some finite time. Whether or not our universe contains any IMs, they are worthy of study as upper bounds on finite machines. We introduce IMs and describe some of their physical and psychological aspects. An accelerating Turing machine (an ATM) is a Turing machine that performs every next operation twice as fast. It can carry out infinitely many operations in finite time. Many ATMs (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  8. Topological Games, Supertasks, and (Un)Determined Experiments.Thomas Mormann - manuscript
    The general aim of this paper is to introduce some ideas of the theory of infinite topological games into the philosophical debate on supertasks. First, we discuss the elementary aspects of some infinite topological games, among them the Banach-Mazur game.Then it is shown that the Banach-Mazur game may be conceived as a Newtonian supertask.In section 4 we propose to conceive physical experiments as infinite games. This leads to the distinction between determined and undetermined experiments and the problem of how (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark