Current COVID-19 pandemic and previous SARS/MERS outbreaks have caused a series of major crises to global public health. We must integrate the large and exponentially growing amount of heterogeneous coronavirus data to better understand coronaviruses and associated disease mechanisms, in the interest of developing effective and safe vaccines and drugs. Ontologies have emerged to play an important role in standard knowledge and data representation, integration, sharing, and analysis. We have initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO). (...) As an Open Biomedical Ontology (OBO) library ontology, CIDO is an open source and interoperable with other existing OBO ontologies. In this article, the general architecture and the design patterns of the CIDO are introduced, CIDO representation of coronaviruses, phenotypes, anti-coronavirus drugs and medical devices (e.g. ventilators) are illustrated, and an application of CIDO implemented to identify repurposable drug candidates for effective and safe COVID-19 treatment is presented. (shrink)
Ontologies, as the term is used in informatics, are structured vocabularies comprised of human- and computer-interpretable terms and relations that represent entities and relationships. Within informatics fields, ontologies play an important role in knowledge and data standardization, representation, integra- tion, sharing and analysis. They have also become a foundation of artificial intelligence (AI) research. In what follows, we outline the Coronavirus Infectious Disease Ontology (CIDO), which covers multiple areas in the domain of coronavirus diseases, including etiology, transmission, epidemiology, pathogenesis, diagnosis, (...) prevention, and treatment. We emphasize CIDO development relevant to COVID-19. (shrink)
The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the (...) development of the community-based Coronavirus Infectious Disease Ontology in early 2020. -/- As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. -/- CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications. (shrink)
COVID-19 often manifests with different outcomes in different patients, highlighting the complexity of the host-pathogen interactions involved in manifestations of the disease at the molecular and cellular levels. In this paper, we propose a set of postulates and a framework for systematically understanding complex molecular host-pathogen interaction networks. Specifically, we first propose four host-pathogen interaction (HPI) postulates as the basis for understanding molecular and cellular host-pathogen interactions and their relations to disease outcomes. These four postulates cover the evolutionary dispositions involved (...) in HPIs, the dynamic nature of HPI outcomes, roles that HPI components may occupy leading to such outcomes, and HPI checkpoints that are critical for specific disease outcomes. Based on these postulates, an HPI Postulate and Ontology (HPIPO) framework is proposed to apply interoperable ontologies to systematically model and represent various granular details and knowledge within the scope of the HPI postulates, in a way that will support AI-ready data standardization, sharing, integration, and analysis. As a demonstration, the HPI postulates and the HPIPO framework were applied to study COVID-19 with the Coronavirus Infectious Disease Ontology (CIDO), leading to a novel approach to rational design of drug/vaccine cocktails aimed at interrupting processes occurring at critical host-coronavirus interaction checkpoints. Furthermore, the host-coronavirus protein-protein interactions (PPIs) relevant to COVID-19 were predicted and evaluated based on prior knowledge of curated PPIs and domain-domain interactions, and how such studies can be further explored with the HPI postulates and the HPIPO framework is discussed. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.