Results for 'physical model'

970 found
Order:
  1. (1 other version)Anthropic principle in physical models without time and dynamics (in Russian).Andrey Smirnov - manuscript
    The construction of spacetime in a physical system without time and dynamics is considered. It is shown that in models without time and dynamics anthropic principle and causality principle inevitably arise. It is shown that for any physical model based on a system without time and dynamics, the anthropic principle is a scientific principle and, in principle, can be falsified. It is shown that, in principle, there is the possibility of experimental verification of what is true - (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Modelling in applied physics: The case of polymers.Towfic Shomar - 2006 - Dirasat, Pure Science 33 (2):241-250.
    Until recently philosophy of physics has been overshadowed by the idea that the important philosophical issues that can be derived from physics are related only to fundamental theories, such as quantum mechanics and relativity. Applied fields of physics were deemed as unimportant. The argument for such a position lays in thinking that these applied fields of physics depend in their theoretical representations on fundamental theories and hence are reducible to these fundamental theories. It would be hard to defend such a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Reducing Chemistry to Physics: Limits, Models, Consequences.Hinne Hettema - 2012 - Createspace.
    Chemistry and physics are two sciences that are hard to connect. Yet there is significant overlap in their aims, methods, and theoretical approaches. In this book, the reduction of chemistry to physics is defended from the viewpoint of a naturalised Nagelian reduction, which is based on a close reading of Nagel's original text. This naturalised notion of reduction is capable of characterising the inter-theory relationships between theories of chemistry and theories of physics. The reconsideration of reduction also leads to a (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  4. Theories as models in teaching physics.Nahum Kipnis - 1998 - Science & Education 7 (3):245-260.
    Discussing theories at length, including their origin, development, and replacement by other theories, can help students in understanding of both objective and subjective aspects of the scientific process. Presenting theories in the form of- models helps in this undertaking, and the history of science provides a number of suitable models. The paper describes specific examples that have been used in in-service courses for science teachers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. Developing a Constructivist Model for Effective Physics Learning.Jacob Kola Aina - 2017 - International Journal of Trend in Scientific Research and Development 1 (4):59-67.
    The paper considered developing a constructivist model for effective physics teaching. The model is imperative because of the increasing difficulty in learning physics and the resulting poor academic performance in the subject. The paper reviewed two types of constructivism which are the social and cognitive constructivism. Highlights of correlations between the constructivist learning and the authentic learning were revealed. To applying the model to physics learning, it was argued that constructivist teachers should give serious attention to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  48
    Calibrating The Theory of Model Mediated Measurement: Metrological Extension, Dimensional Analysis, and High Pressure Physics.Mahmoud Jalloh - forthcoming - European Journal for Philosophy of Science.
    I argue that dimensional analysis provides an answer to a skeptical challenge to the theory of model mediated measurement. The problem arises when considering the task of calibrating a novel measurement procedure, with greater range, to the results of a prior measurement procedure. The skeptical worry is that the agreement of the novel and prior measurement procedures in their shared range may only be apparent due to the emergence of systematic error in the exclusive range of the novel measurement (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. A Model for Constructing the Physical Universe.White Paul - manuscript
    In the introduction I argue that the basic element (or primitive) for constructing the physical universe is "displacement from a prior level", and the basic structure is "a sequence of such displacements" (summarized as postulates 1 and 2). The displacements are then defined as one-dimensional objects with a direction (postulate 3). The relations between these displacements are stated in postulate 4. In section 2 we discuss basic consequences of the postulates, and in section 3 we use the postulates to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Supernatural Resurrection and its Incompatibility with the Standard Model of Particle Physics: Second Rejoinder to Stephen T. Davis.Robert Greg Cavin & Carlos A. Colombetti - 2021 - Socio-Historical Examination of Religion and Ministry 3 (2):253-277.
    In response to Stephen Davis’s criticism of our previous essay, we revisit and defend our arguments that the Resurrection hypothesis is logically incompatible with the Standard Model of particle physics—and thus is maximally implausible—and that it cannot explain the sensory experiences of the Risen Jesus attributed to various witnesses in the New Testament—and thus has low explanatory power. We also review Davis’s reply, noting that he evades our arguments, misstates their conclusions, and distracts the reader with irrelevancies regarding, e.g., (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Forces in a true and physical sense: from mathematical models to metaphysical conclusions.Corey Dethier - 2019 - Synthese 198 (2):1109-1122.
    Wilson [Dialectica 63:525–554, 2009], Moore [Int Stud Philos Sci 26:359–380, 2012], and Massin [Br J Philos Sci 68:805–846, 2017] identify an overdetermination problem arising from the principle of composition in Newtonian physics. I argue that the principle of composition is a red herring: what’s really at issue are contrasting metaphysical views about how to interpret the science. One of these views—that real forces are to be tied to physical interactions like pushes and pulls—is a superior guide to real forces (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Physically Similar Systems: a history of the concept.Susan G. Sterrett - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 377-412.
    The concept of similar systems arose in physics, and appears to have originated with Newton in the seventeenth century. This chapter provides a critical history of the concept of physically similar systems, the twentieth century concept into which it developed. The concept was used in the nineteenth century in various fields of engineering, theoretical physics and theoretical and experimental hydrodynamics. In 1914, it was articulated in terms of ideas developed in the eighteenth century and used in nineteenth century mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  12. Physical modeling applies to physiology, too.Vincent Hayward - 1992 - Behavioral and Brain Sciences 15 (2):342-343.
    A physical model was utilized to show that the neural system can memorize a target position and is able to cause motor and sensory events that move the arm to a target with more accuracy. However, this cannot indicate in which coordinates the necessary computations are carried out. Turning off the lights causes the error to increase which is accomplished by cutting off one feedback path. The geometrical properties of arm kinematics and the properties of the kinesthetic and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Nowak, Models, and the Lessons of Neo-Kantianism.Stephen Turner - 2023 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 30 (2):165-170.
    Models are the coin of the realm in current philosophy of science, as they are in science itself, having replaced laws and theories as the primary strategy. Logical Positivism tried to erase the older neo-Kantian distinction between ideal constructions and reality. It returns in the case of models. Nowak’s concept of idealization pro- vided an alternative account of this issue. It construed model application as concretizations of hypotheses which improve by accounting for exceptions. This appears to account for (...) law. But it raises the problem of uniqueness: is the result unique, as physical law should be? Neo-Kantianism failed this test. Its solutions were circular justifications for claims of uniqueness. Nowak inherited the problem without resolving it. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Model templates within and between disciplines: from magnets to gases – and socio-economic systems.Tarja Knuuttila & Andrea Loettgers - 2016 - European Journal for Philosophy of Science 6 (3):377-400.
    One striking feature of the contemporary modelling practice is its interdisciplinary nature. The same equation forms, and mathematical and computational methods, are used across different disciplines, as well as within the same discipline. Are there, then, differences between intra- and interdisciplinary transfer, and can the comparison between the two provide more insight on the challenges of interdisciplinary theoretical work? We will study the development and various uses of the Ising model within physics, contrasting them to its applications to socio-economic (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  15. Physical Possibility and Determinate Number Theory.Sharon Berry - manuscript
    It's currently fashionable to take Putnamian model theoretic worries seriously for mathematics, but not for discussions of ordinary physical objects and the sciences. But I will argue that (under certain mild assumptions) merely securing determinate reference to physical possibility suffices to rule out nonstandard models of our talk of numbers. So anyone who accepts realist reference to physical possibility should not reject reference to the standard model of the natural numbers on Putnamian model theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Experimentation on Analogue Models.Susan G. Sterrett - 2017 - In Springer handbook of model-based science (2017). Springer. pp. 857-878.
    Summary Analogue models are actual physical setups used to model something else. They are especially useful when what we wish to investigate is difficult to observe or experiment upon due to size or distance in space or time: for example, if the thing we wish to investigate is too large, too far away, takes place on a time scale that is too long, does not yet exist or has ceased to exist. The range and variety of analogue models (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  17. A Physicsl Model of Electron According to the Basic Structures of Matter Hypothesis.Stoyan Sarg - 2003 - Physics Essays 16 (2):180-195.
    A physical model of the electron is suggested according to the basic structures of matter (BSM) hypothesis. BSM is based on an alternative concept about the physical vacuum, assuming that space contains an underlying grid structure of nodes formed of superdense subelementary particles, which are also involved in the structure of the elementary particles. The proposed grid structure is formed of vibrating nodes that possess quantum features and energy well. It is admitted that this hypothetical structure could (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Causation, physics, and fit.Christian Loew - 2017 - Synthese 194 (6):1945–1965.
    Our ordinary causal concept seems to fit poorly with how our best physics describes the world. We think of causation as a time-asymmetric dependence relation between relatively local events. Yet fundamental physics describes the world in terms of dynamical laws that are, possible small exceptions aside, time symmetric and that relate global time slices. My goal in this paper is to show why we are successful at using local, time-asymmetric models in causal explanations despite this apparent mismatch with fundamental physics. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  19. Bottoms up: The Standard Model Effective Field Theory from a model perspective.Philip Bechtle, Cristin Chall, Martin King, Michael Krämer, Peter Mättig & Michael Stöltzner - 2022 - Studies in History and Philosophy of Science Part A 92:129-143.
    Experiments in particle physics have hitherto failed to produce any significant evidence for the many explicit models of physics beyond the Standard Model (BSM) that had been proposed over the past decades. As a result, physicists have increasingly turned to model-independent strategies as tools in searching for a wide range of possible BSM effects. In this paper, we describe the Standard Model Effective Field Theory (SM-EFT) and analyse it in the context of the philosophical discussions about models, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. Models and Inferences in Science.Emiliano Ippoliti, Fabio Sterpetti & Thomas Nickles (eds.) - 2016 - Cham: Springer.
    The book answers long-standing questions on scientific modeling and inference across multiple perspectives and disciplines, including logic, mathematics, physics and medicine. The different chapters cover a variety of issues, such as the role models play in scientific practice; the way science shapes our concept of models; ways of modeling the pursuit of scientific knowledge; the relationship between our concept of models and our concept of science. The book also discusses models and scientific explanations; models in the semantic view of theories; (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Models in the Geosciences.Alisa Bokulich & Naomi Oreskes - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 891-911.
    The geosciences include a wide spectrum of disciplines ranging from paleontology to climate science, and involve studies of a vast range of spatial and temporal scales, from the deep-time history of microbial life to the future of a system no less immense and complex than the entire Earth. Modeling is thus a central and indispensable tool across the geosciences. Here, we review both the history and current state of model-based inquiry in the geosciences. Research in these fields makes use (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. Tropes and Physics.Matteo Morganti - 2009 - Grazer Philosophische Studien 78 (1):185--205.
    Th is paper looks at quantum theory and the Standard Model of elementary particles with a view to suggesting a detailed empirical implementation of trope ontology in harmony with our best physics.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  23. Collapse Models:a theoretical, experimental and philosophical review.Mauro Dorato, Angelo Bassi & Hendrik Ulbricht - 2023 - Entropy 25 (645):1.
    In this paper, we review and connect the three essential conditions needed by the collapse model to achieve a complete and exact formulation, namely the theoretical, the experimental, and the ontological ones. These features correspond to the three parts of the paper. In any empirical science, the first two features are obviously connected but, as is well known, among the different formulations and interpretations of non-relativistic quantum mechanics, only collapse models, as the paper well illustrates with a richness of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Are Models Our Tools Not Our Masters?Caspar Jacobs - 2023 - Synthese 202 (4):1-21.
    It is often claimed that one can avoid the kind of underdetermination that is a typical consequence of symmetries in physics by stipulating that symmetry-related models represent the same state of affairs (Leibniz Equivalence). But recent commentators (Dasgupta 2011; Pooley 2021; Pooley and Read 2021; Teitel 2021a) have responded that claims about the representational capacities of models are irrelevant to the issue of underdetermination, which concerns possible worlds themselves. In this paper I distinguish two versions of this objection: (1) that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Physical Entity as Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a bit, as well as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Philosophical Model of Special Relativity.Alexander Klimets - 2012 - Quantum Magic 9 (3):3113-3123.
    The model of special relativity is built in the article. Within the framework of the model, formulas of special relativity are obtained and their philosophical and physical meaning is revealed.
    Download  
     
    Export citation  
     
    Bookmark  
  27. Naive physics.Barry Smith & Roberto Casati - 1994 - Philosophical Psychology 7 (2):227 – 247.
    The project of a 'naive physics' has been the subject of attention in recent years above all in the artificial intelligence field, in connection with work on common-sense reasoning, perceptual representation and robotics. The idea of a theory of the common-sense world is however much older than this, having its roots not least in the work of phenomenologists and Gestalt psychologists such as K hler, Husserl, Schapp and Gibson. This paper seeks to show how contemporary naive physicists can profit from (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  28.  90
    Evaluation of Mathematical Regression Models for Historic Buildings Typology Case of Kruja (Albania).Klodjan Xhexhi - 2019 - International Journal of Science and Research (IJSR) 8 (8):90-101.
    The city of Kruja (Albania)contains three types of dwellings that date back to different periods of time: the historic ones, the socialist ones, the modern ones. This paper has to deal only with the historic building's typology. The questionnaire that is applied will be considered for the development of mathematical regression based on specific data for this category. Variation between the relevant variables of the questionnaire is fairly or inverse-linked with a certain percentage of influence. The aim of this study (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Looking for Emergence in Physics.Joana Rigato - 2017 - Phenomenology and Mind 12:174-183.
    Despite its recent popularity, Emergence is still a field where philosophers and physicists often talk past each other. In fact, while philosophical discussions focus mostly on ontological emergence, physical theory is inherently limited to the epistemological level and the impossibility of its conclusions to provide direct evidence for ontological claims is often underestimated. Nevertheless, the emergentist philosopher’s case against reductionist theories of how the different levels of reality are related to each other can still gain from the assessment of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Taming the tyranny of scales: models and scale in the geosciences.Alisa Bokulich - 2021 - Synthese 199 (5-6):14167-14199.
    While the predominant focus of the philosophical literature on scientific modeling has been on single-scale models, most systems in nature exhibit complex multiscale behavior, requiring new modeling methods. This challenge of modeling phenomena across a vast range of spatial and temporal scales has been called the tyranny of scales problem. Drawing on research in the geosciences, I synthesize and analyze a number of strategies for taming this tyranny in the context of conceptual, physical, and mathematical modeling. This includes several (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - 2021 - In The Physics of God and the Quantum Gravity Theory of Everything: And Other Selected Works. Chișinău, Moldova: Eliva Press. pp. 1-186.
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (TOE) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Quantum Physics: An overview of a weird world: A guide to the 21st century quantum revolution.Marco Masi - 2019 - Indy Edition.
    This second volume is a continuation of the first volume’s 20th century conceptual foundations of quantum physics extending its view to the principles and research fields of the 21st century. A summary of the standard concepts, from modern advanced experimental tests of 'quantum ontology’ to the interpretations of quantum mechanics, the standard model of particle physics, and the mainstream quantum gravity theories. A state-of-the-art treatise that reports on the recent developments in quantum computing, classical and quantum information theory, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Tangled physics: Knots strain intuitive physical reasoning.Chaz Firestone & Sholei Croom - 2024 - Open Mind.
    Whereas decades of research have cataloged striking errors in physical reasoning, a resurgence of interest in intuitive physics has revealed humans’ remarkable ability to successfully predict the unfolding of physical scenes. A leading interpretation intended to resolve these opposing results is that physical reasoning recruits a general-purpose mechanism that reliably models physical scenarios (explaining recent successes), but overly contrived tasks or impoverished and ecologically invalid stimuli can produce poor performance (accounting for earlier failures). But might there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Information: From Philosophic to Physics Concepts for Informational Modeling of Consciousness.Florin Gaiseanu - 2018 - Philosophy Study 8 (8).
    Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In this paper it is followed the concept of information from philosophical to physics perspective, showing especially how this concept could be extended to matter in general and to the living in particular, as a result of the intimate interaction between matter and information, the human body appearing as a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  35. Physics and ontology - or The 'ontology-ladenness' of epistemology and the 'scientific realism'-debate.Rudolf Lindpointner - manuscript
    The question of what ontological insights can be gained from the knowledge of physics (keyword: ontic structural realism) cannot obviously be separated from the view of physics as a science from an epistemological perspective. This is also visible in the debate about 'scientific realism'. This debate makes it evident, in the form of the importance of perception as a criterion for the assertion of existence in relation to the 'theoretical entities' of physics, that epistemology itself is 'ontologically laden'. This is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Simplified models: a different perspective on models as mediators.C. D. McCoy & Michela Massimi - 2018 - European Journal for Philosophy of Science 8 (1):99-123.
    We introduce a novel point of view on the “models as mediators” framework in order to emphasize certain important epistemological questions about models in science which have so far been little investigated. To illustrate how this perspective can help answer these kinds of questions, we explore the use of simplified models in high energy physics research beyond the Standard Model. We show in detail how the construction of simplified models is grounded in the need to mitigate pressing epistemic problems (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  37. PHYSICAL PARAMETERS OF MIND-BODY INTERACTION: BREAKING THE 1ST PERSON 3RD PERSON BARRIER.Richard L. Amoroso - 2012 - Journal of Nonlocality 1 (01).
    This physics note entails a summary of an extended form of Eccles-Cartesian Interactive Dualism mind-body-multiverse paradigm called Noetic Field Theory: The Quantization of Mind (NFT), distinguished as a paradigm because it is comprehensive and empirically testable. NFT posits not only that the brain is not the seat of awareness but also that neither classical nor quantum mechanics are sufficient to describe mind as the required regime entails the new physics associated with Unified Field, UF Mechanics. This means that the brain (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Modelling Sex/Gender.Helen L. Daly - 2017 - Think 16 (46):79-92.
    People often assume that everyone can be divided by sex/gender (that is, by physical and social characteristics having to do with maleness and femaleness) into two tidy categories: male and female. Careful thought, however, leads us to reject that simple ‘binary’ picture, since not all people fall precisely into one group or the other. But if we do not think of sex/gender in terms of those two categories, how else might we think of it? Here I consider four distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. The tool box of science: Tools for the building of models with a superconductivity example.Nancy Cartwright, Towfic Shomar & Mauricio Suárez - 1995 - Poznan Studies in the Philosophy of the Sciences and the Humanities 44:137-149.
    We call for a new philosophical conception of models in physics. Some standard conceptions take models to be useful approximations to theorems, that are the chief means to test theories. Hence the heuristics of model building is dictated by the requirements and practice of theory-testing. In this paper we argue that a theory-driven view of models can not account for common procedures used by scientists to model phenomena. We illustrate this thesis with a case study: the construction of (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  40. Introduction: Interdisciplinary model exchanges.Till Grüne-Yanoff & Uskali Mäki - 2014 - Studies in History and Philosophy of Science Part A 48:52-59.
    The five studies of this special section investigate the role of models and similar representational tools in interdisciplinarity. These studies were all written by philosophers of science, who focused on interdisciplinary episodes between disciplines and sub-disciplines ranging from physics, chemistry and biology to the computational sciences, sociology and economics. The reasons we present these divergent studies in a collective form are three. First, we want to establish model-exchange as a kind of interdisciplinary event. The five case studies, which are (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  41. Physics is Part of Culture and the Basis of Technology.Stephan Hartmann & Jürgen Mittelstrass - 2000 - In DPG (ed.), Physics - Physics Research: Topics, Significance and Prospects. DPG.
    Fundamental aspects of modern life owe their existence to the achievements of scientific reason. In other words, science is an integral element of the modern world and simultaneously the epitome of the rational nature of a technical culture that makes up the essence of the modern world. Without science, the modern world would lose its very nature and modern society its future. Right from the start, physics forms the core of European scientific development. It is the original paradigm of science, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. How the Models of Chemistry Vie.James R. Hofmann - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:405 - 419.
    Building upon Nancy Cartwright's discussion of models in How the Laws of Physics Lie, this paper addresses solid state research in transition metal oxides. Historical analysis reveals that in this domain models function both as the culmination of phenomenology and the commencement of theoretical explanation. Those solid state chemists who concentrate on the description of phenomena pertinent to specific elements or compounds assess models according to different standards than those who seek explanation grounded in approximate applications of the Schroedinger equation. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  43. Morphological Computation: Nothing but Physical Computation.Marcin Miłkowski - 2018 - Entropy 10 (20):942.
    The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including their energy efficiency, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Mathematical models of games of chance: Epistemological taxonomy and potential in problem-gambling research.Catalin Barboianu - 2015 - UNLV Gaming Research and Review Journal 19 (1):17-30.
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Symmetry in Physics: Proportion and Harmony to the term of Metalanguage.Ruth Castillo - 2018 - Dissertation, Universidad Central de Venezuela
    SYMMETRY IN PHYSICS: FROM PROPORTION AND HARMONY TO THE TERM OF METALENGUAJE -/- Ruth Castillo Universidad Central de Venezuela -/- The revolutionary changes in physics require a careful exploration of the way in which concepts depend on the theoretical structure in which they are immerse. A historical reconstruction allows us to show how the notion of symmetry evolves from the definition as proportion and harmony to its consideration within the language of contemporary physics, as a linguistic meta-theoretical requirement in (...) theories. In contemporary terms, symmetry is a fundamental category of research to which the usual categories of the natural sciences can be reduce in: space, time, causality, interaction, matter, strength, etc ... Thus, symmetry is a concept with different meanings: heuristically symmetric models inspire scientists in the search for solutions to different problems. Methodologically, symmetric structures are use to make theories, laws with invariant properties. A description of nature in terms of symmetric structures and symmetry ruptures seems to be the proper way to describe the complexity of reality. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Retrocausal Models for EPR.Richard Corry - 2015 - Studies in the History and Philosophy of Modern Physics 49:1-9.
    This paper takes up Huw Price׳s challenge to develop a retrocausal toy model of the Bell-EPR experiment. I develop three such models which show that a consistent, local, hidden-variables interpretation of the EPR experiment is indeed possible, and which give a feel for the kind of retrocausation involved. The first of the models also makes clear a problematic feature of retrocausation: it seems that we cannot interpret the hidden elements of reality in a retrocausal model as possessing determinate (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  47. Mental models of force and motion.Varol Akman, Deniz Ede, William Randolph Franklin & Paul J. W. ten Hagen - 1990 - In Okyay Kaynak (ed.), Proceedings of the IEEE International Workshop on Intelligent Motion Control (Istanbul, 20-22 August 1990). Institute of Electrical and Electronics Engineers. pp. 153-158.
    Future robots should have common sense about the world in order to handle the problems they will encounter. A large part of this commonsense knowledge must be naive physics knowledge, since carrying out even the simplest everyday chores requires familiarity with physics laws. But how should one start codifying this knowledge? What kind of skills should be elicited from the experts (each and every one of us)? This paper will attempt to provide some hints by studying the mental models of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Minimal model explanations of cognition.Nick Brancazio & Russell Meyer - 2023 - European Journal for Philosophy of Science 13 (41):1-25.
    Active materials are self-propelled non-living entities which, in some circumstances, exhibit a number of cognitively interesting behaviors such as gradient-following, avoiding obstacles, signaling and group coordination. This has led to scientific and philosophical discussion of whether this may make them useful as minimal models of cognition (Hanczyc, 2014; McGivern, 2019). Batterman and Rice (2014) have argued that what makes a minimal model explanatory is that the model is ultimately in the same universality class as the target system, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. (1 other version)How-Possibly Explanation in Biology: Lessons from Wilhelm His’s ‘Simple Experiments’ Models.Christopher Pearson - 2018 - Philosophy, Theory, and Practice in Biology 10 (4).
    A common view of how-possibly explanations in biology treats them as explanatorily incomplete. In addition to this interpretation of how-possibly explanation, I argue that there is another interpretation, one which features what I term “explanatory strategies.” This strategy-centered interpretation of how-possibly explanation centers on there being a different explanatory context within which how-possibly explanations are offered. I contend that, in conditions where this strategy context is recognized, how-possibly explanations can be understood as complete explanations. I defend this alternative interpretation by (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. The fundamental laws of physics can tell the truth.Renat Nugayev - 1991 - International Studies in the Philosophy of Science 5 (1):79 – 87.
    INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE Vol. 5, number 1, Autumn 1991, pp. 79-87. R.M. Nugayev. -/- The fundamental laws of physics can tell the truth. -/- Abstract. Nancy Cartwright’s arguments in favour of phenomenological laws and against fundamental ones are discussed. Her criticisms of the standard cjvering-law account are extended using Vyacheslav Stepin’s analysis of the structure of fundamental theories. It is argued that Cartwright’s thesis 9that the laws of physics lie) is too radical to accept. A (...) of theory change is proposed which demonstrates how the fundamental laws of physics can, in fact, be confronted with experience. -/- . (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 970