Results for 'quantum anthropology'

909 found
Order:
  1. Quantum Anthropology: Man, Cultures, and Groups in a Quantum Perspective.Radek Trnka & Radmila Lorencová - 2016 - Charles University Karolinum Press.
    This philosophical anthropology tries to explore the basic categories of man’s being in the worlds using a special quantum meta-ontology that is introduced in the book. Quantum understanding of space and time, consciousness, or empirical/nonempirical reality elicits new questions relating to philosophical concerns such as subjectivity, free will, mind, perception, experience, dialectic, or agency. The authors have developed an inspiring theoretical framework transcending the boundaries of particular disciplines, e.g. quantum philosophy, metaphysics of consciousness, philosophy of mind, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Human Beings in Quantum Anthropology: A Paradox of the Discontinuous Experience of Quantum Spacetime.Radek Trnka - manuscript
    This paper is a shortened version of an invited lecture held at the University of Copenhagen (Department of Anthropology) on 28 March 2019.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. In the chaos of today's society: The dynamics of collapse as another shift in the quantum anthropology of Heidi Ann Russell.Radek Trnka - 2015 - Prague: Togga.
    The presented study introduces a new theoretical model of collapse for social, cultural, or political systems. Based on the current form of quantum anthropology conceptualized by Heidi Ann Russell, further development of this field is provided. The new theoretical model is called the spiral model of collapses, and is suggested to provide an analytical framework for collapses in social, cultural, and political systems. The main conclusions of this study are: 1) The individual crises in the period before a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. The Human Aspect of Christ between Classic and Quantum Consciousness: Gethsemane - Anxiety & Depression between Biochemistry & Anthropology.Massimo Cocchi, Lucio Tonello & Fabio Gabrielli - 2012 - Scientific GOD Journal:432-439.
    The studies carried out in recent years on the molecular dynamics of consciousness, especially in relation to diseases such as major depression and bipolar disorder, on man considered as a synthesis of nature and culture, in their interdisciplinary and transdisciplinary expression, prompted us to carry out the molecular logic involving the human component of Christ (Christ-Man). On the basis of evidence presented in the Holy Scriptures, regarding the hours that preceded his death, we tend, in the light of the molecular (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Thoughts on Artificial Intelligence and the Origin of Life Resulting from General Relativity, with Neo-Darwinist Reference to Human Evolution and Mathematical Reference to Cosmology.Rodney Bartlett - manuscript
    When this article was first planned, writing was going to be exclusively about two things - the origin of life and human evolution. But it turned out to be out of the question for the author to restrict himself to these biological and anthropological topics. A proper understanding of them required answering questions like “What is the nature of the universe – the home of life – and how did it originate?”, “How can time travel be removed from fantasy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Preface/Introduction — Hollows of Memory: From Individual Consciousness to Panexperientialism and Beyond.Gregory M. Nixon - 2010 - Journal of Consciousness Exploration and Research 1 (3):213-215.
    Preface/Introduction: The question under discussion is metaphysical and truly elemental. It emerges in two aspects — how did we come to be conscious of our own existence, and, as a deeper corollary, do existence and awareness necessitate each other? I am bold enough to explore these questions and I invite you to come along; I make no claim to have discovered absolute answers. However, I do believe I have created here a compelling interpretation. You’ll have to judge for yourself. -/- (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Caput.Mota Victor - manuscript
    some literary day about philosophical topics and some anthropological items.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Quantum Technologies in Industry 4.0: Navigating the Ethical Frontier with Value-Sensitive Design.Steven Umbrello - 2024 - Procedia Computer Science 232:1654-1662.
    With the emergence of quantum technologies such as quantum computing, quantum communications, and quantum sensing, new potential has emerged for smart manufacturing and Industry 4.0. These technologies, however, present ethical concerns that must be addressed in order to ensure they are developed and used responsibly. This article outlines some of the ethical challenges that quantum technologies may raise for Industry 4.0 and presents the value sensitive design methodology as a strategy for ethics-by-design of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Quantum Theory, Objectification and Some Memories of Giovanni Morchio.Luca Sciortino - 2023 - In Alessandro Michelangeli & Andrea Cintio (eds.), Trails in Modern Theoretical and Mathematical Physics. Springer. pp. 301-310.
    In this contribution I will retrace the main stages of my research on the objectification problem in quantum mechanics by highlighting some personal memories of my supervisor, the theoretical physicist Giovanni Morchio. The central aim of my MSc thesis was to ask whether the hypothesis of objectification, which is currently added to the formalism, is not, at least in one case, deducible from it and in particular from the dynamics of the temporal evolution. The case study we were looking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  13.  96
    Quantum theology, or: “Theologie als strenge Wissenschaft”.Vasil Penchev - 2024 - Metaphilosophy eJournal (Elsevier: SSRN) 16 (15):1-66.
    The main idea consists in researching the existence of certain characteristics of nature similar to human reasonability and purposeful actions, originating and rigorously inferable from the postulates of quantum mechanics as well as from those of special and general relativity. The pathway of the “free-will theorems” proved by Conway and Kochen in 2006 and 2009 is followed and pioneered further. Those natural reasonability and teleology are identified as a special subject called “God” and studyable by “quantum theology”, a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. How Quantum is Quantum Counterfactual Communication?Jonte R. Hance, James Ladyman & John Rarity - 2021 - Foundations of Physics 51 (1):1-17.
    Quantum Counterfactual Communication is the recently-proposed idea of using quantum physics to send messages between two parties, without any matter/energy transfer associated with the bits sent. While this has excited massive interest, both for potential ‘unhackable’ communication, and insight into the foundations of quantum mechanics, it has been asked whether this process is essentially quantum, or could be performed classically. We examine counterfactual communication, both classical and quantum, and show that the protocols proposed so far (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Quantum mereotopology.Barry Smith & Berit O. Brogaard - 2002 - Annals of Mathematics and Artificial Intelligence 36 (1):153-175.
    Mereotopology faces problems when its methods are extended to deal with time and change. We offer a new solution to these problems, based on a theory of partitions of reality which allows us to simulate (and also to generalize) aspects of set theory within a mereotopological framework. This theory is extended to a theory of coarse- and fine-grained histories (or finite sequences of partitions evolving over time), drawing on machinery developed within the framework of the so-called ‘consistent histories’ interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  16. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  17. Quantum Measure from a Philosophical Viewpoint.Vasil Penchev - 2014 - Journal of Siberian Federal University. Humanities and Social Sciences 7 (1):4-19.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  98
    Quantum Probability Amplitudes as Fractions of the Planck Frequency.Matheus P. Lobo - 2024 - Open Journal of Mathematics and Physics 6 (283).
    I conjecture that the probability amplitudes of a quantum state are fractions of the Planck frequency, stemming from the rich dynamics at the Planck scale. This offers a means to indirectly measure the fundamental properties of quantum spacetime and potentially resolves the measurement problem.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  20. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  22. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. How Quantum Theory Helps Us Explain.Richard Healey - 2012 - British Journal for the Philosophy of Science (1):axt031.
    I offer an account of how the quantum theory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities is then (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  25. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26.  80
    Quantum Economic Theory of Intelligence.Kaiola Liu - 2023 - International Journal of Social Science and Human Research 7.
    The Quantum Economics Intelligence Initiative, spearheaded by Quantum Economist PhDs. Kaiola M Liu integrates insights from seminal thinkers like Einstein, Archimedes, Adam Smith, Nick Land, and Sun Tzu. By applying principles of quantum mechanics, this forward-looking project aims to redefine economic modeling, exploring real-world applications and potential benefits. The initiative encompasses foundational studies, economic model applications, incorporation of quantum computing, and analysis of contemporary economic philosophies. Keywords - Quantum Mechanics, Economics, Technological Advancements, Philosophy.
    Download  
     
    Export citation  
     
    Bookmark  
  27. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  28. Quantum mechanics unscrambled.Jean-Michel Delhotel - 2014
    Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as a ‘lossy’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. The quantum epoché.Paavo Pylkkänen - 2015 - Progress in Biophysics and Molecular Biology 119:332-340.
    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Download  
     
    Export citation  
     
    Bookmark  
  31. Against Quantum Indeterminacy.David Glick - 2017 - Thought: A Journal of Philosophy 6 (3):204-213.
    A growing literature is premised on the claim that quantum mechanics provides evidence for metaphysical indeterminacy. But does it? None of the currently fashionable realist interpretations involve fundamental indeterminacy and the ‘standard interpretation’, to the extent that it can be made out, doesn't require indeterminacy either.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  32. (1 other version)Quantum mechanics and consciousness: Thoughts on a causal correspondence theory.Ian J. Thompson - 2017 - In S. Gosh, B. D. Mundhra, K. Vasudeva Rao & Varun Agarwal (eds.), Quantum Physics & Consciousness - Thoughts of Founding Fathers of Quantum Physics and other Renowned Scholars. Bhaktivedanta Institute. pp. 173-185.
    Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  34. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. (1 other version)Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make you (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Quantum Entanglement Undermines Structural Realism.Seungbae Park - 2022 - Metaphysica 23 (1):1-13.
    Quantum entanglement poses a challenge to the traditional metaphysical view that an extrinsic property of an object is determined by its intrinsic properties. So structural realists might be tempted to cite quantum entanglement as evidence for structural realism. I argue, however, that quantum entanglement undermines structural realism. If we classify two entangled electrons as a single system, we can say that their spin properties are intrinsic properties of the system, and that we can have knowledge about these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Anthropology as critique: Foucault, Kant and the metacritical tradition.Sabina F. Vaccarino Bremner - 2020 - British Journal for the History of Philosophy 28 (2):336-358.
    While increasing attention has been paid in recent years to the relation between Foucault’s conception of critique and Kant’s, much controversy remains over whether Foucault’s most sustained early engagement with Kant, his dissertation on Kant’s Anthropology, should be read as a wholesale rejection of Kant’s views or as the source of Foucault’s late return to ethics and critique. In this paper, I propose a new reading of the dissertation, considering it alongside 1950s-era archival materials of which I advance the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  38. A Quantum-Theoretic Argument Against Naturalism.Bruce L. Gordon - 2011 - In Bruce Gordon & William A. Dembski (eds.), The nature of nature: examining the role of naturalism in science. Wilmington, DE: ISI Books. pp. 179-214.
    Quantum theory offers mathematical descriptions of measurable phenomena with great facility and accuracy, but it provides absolutely no understanding of why any particular quantum outcome is observed. It is the province of genuine explanations to tell us how things actually work—that is, why such descriptions hold and why such predictions are true. Quantum theory is long on the what, both mathematically and observationally, but almost completely silent on the how and the why. What is even more interesting (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  41. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Interpretations of Quantum Mechanics and Emptiness.Michele Caponigro & Ravi Prakash - 2009 - NeuroQuantology Journal, June 2009 7 (2):198-203.
    The underlying physical reality is a central notion in the interpretations of quantum mechanics. The a priori physical reality notion affects the corresponding interpretation. This paper explore the possibility to establish a relationship between philosophical concept of physical reality in Nagarjuna's epistemology (emptiness) and the picture of underlying physical reality in Einstein, Rovelli and Zeilinger positions. This analysis brings us to conclude that the notion of property of a quantum object is untenable. We can only speak about relational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  44. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. From Quantum Entanglement to Spatiotemporal Distance.Alyssa Ney - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime: Implications From Quantum Gravity. Oxford: Oxford University Press.
    Within the field of quantum gravity, there is an influential research program developing the connection between quantum entanglement and spatiotemporal distance. Quantum information theory gives us highly refined tools for quantifying quantum entanglement such as the entanglement entropy. Through a series of well-confirmed results, it has been shown how these facts about the entanglement entropy of component systems may be connected to facts about spatiotemporal distance. Physicists are seeing these results as yielding promising methods for better (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Typical Quantum States of the Universe are Observationally Indistinguishable.Eddy Keming Chen & Roderich Tumulka - 2024
    This paper is about the epistemology of quantum theory. We establish a new result about a limitation to knowledge of its central object---the quantum state of the universe. We show that, if the universal quantum state can be assumed to be a typical unit vector from a high-dimensional subspace of Hilbert space (such as the subspace defined by a low-entropy macro-state as prescribed by the Past Hypothesis), then no observation can determine (or even just narrow down significantly) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Quantum Gravity in a Laboratory?Nick Huggett, Niels S. Linnemann & Mike D. Schneider - 2023
    It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics. But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of `tabletop' Gravitationally Induced Entanglement (GIE) experiments, surveyed here. The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Quantum Physics Seen from a Perspective of the Humanities.Yusuke Kaneko - 2017 - The Basis: The Annual Bulletin of ResearchCenter for Liberal Education (Musashino University) 7:171-193.
    Although written in Japanese, an overall picture of quantum physics is drawn, which would surely be useful for beginners as well as researchers of the humanities.
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum theory without measurement or state reduction problems.Alan Macdonald - manuscript
    There is a consistent and simple interpretation of the quantum theory of isolated systems. The interpretation suffers no measurement problem and provides a quantum explanation of state reduction, which is usually postulated. Quantum entanglement plays an essential role in the construction of the interpretation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
1 — 50 / 909