Pattern recognition is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary patterns in any data. That ability of universal pattern recognition is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer (...) would obtain quite different result depending on the degree of the entanglement of the quantum computer and observer. All extraordinary properties of a quantum computer are due to involving a converging infinite computational process contenting necessarily both a continuous advancing calculation and a leap to the limit. Three types of quantum computation can be distinguished according to whether the series is a finite one, an infinite rational or irrational number. (shrink)
Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a (...)quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantumcomputing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformation. (shrink)
The potential for scalable quantumcomputing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end (...) of a quantum computation as irreversible measurements. Specifically, quantum error correction theory models noise as interactions that are uncorrelated or that result in correlations that decay in space and/or time, thus embedding no permanent information to the environment. I challenge this assumption both on logical grounds and by discussing a hypothetical quantum computer based on “position qubits.” The technological difficulties of producing a useful scalable position-qubit quantum computer parallel the overwhelming difficulties in performing a double-slit interference experiment on an object comprising a million to a billion fermions. (shrink)
Natural argument is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary natural arguments in any data. That ability of natural argument is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer (...) would obtain quite different result depending on the degree of the entanglement of the quantum computer and observer. All extraordinary properties of a quantum computer are due to involving a converging infinite computational process contenting necessarily both a continuous advancing calculation and a leap to the limit. Three types of quantum computation can be distinguished according to whether the series is a finite one, an infinite rational or irrational number. -/- . (shrink)
Hydranencephaly is a developmental malady, where the cerebral hemispheres of the brain are reduced partly or entirely too membranous sacs filled with cerebrospinal fluid. Infants with this malady are presumed to have reduced life expectancy with a survival of weeks to few years and which solely depends on care and fostering of these individuals. During their life span these individuals demonstrate behaviours that are termed “vegetative” by neuroscientists but can be comparable to the state of being “aware” or “conscious”. Based (...) on the most simplified definition for consciousness i.e. “awareness” or “to be aware”, these individuals are undeniably aware of their existence and therefore should be termed “conscious”. The bigoted approach of neuroscience towards understanding consciousness is usually linked with the cortex of the brain and therefore a malady as hydranencephaly poses a great challenge to this field. This paper is a compilation of behaviours and aptitudes observed in several cases of hydranencephaly which suggests, that consciousness is not just a brain process, but is a highly quantum computed process that follows laws of quantum physics, giving rise to the subjective experience of consciousness in these individuals. (shrink)
A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...) Many modifications of Turing machines cum quantum ones are researched in Section II for the Halting problem and completeness, and the model of two independent Turing machines seems to generalize them. Then, that pair can be postulated as the formal definition of reality therefore being complete unlike any of them standalone, remaining incomplete without its complementary counterpart. Representation is formal defined as a one-to-one mapping between the two Turing machines, and the set of all those mappings can be considered as “language” therefore including metaphors as mappings different than representation. Section III investigates that formal relation of “reality”, “representation”, and “language” modeled by (at least two) Turing machines. The independence of (two) Turing machines is interpreted by means of game theory and especially of the Nash equilibrium in Section IV. Choice and information as the quantity of choices are involved. That approach seems to be equivalent to that based on set theory and the concept of actual infinity in mathematics and allowing of practical implementations. (shrink)
A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having (...) a remarkable symmetry to the axiom of choice. The quantity of information is interpreted as the number of elementary choices (bits). Quantum information is seen as the generalization of information to infinite sets or series. The equivalence of that model to a quantum computer is demonstrated. The condition for the Turing machines to be independent of each other is reduced to the state of Nash equilibrium between them. Two relative models of language as game in the sense of game theory and as ontology of metaphors (all mappings, which are not one-to-one, i.e. not representations of reality in a formal sense) are deduced. (shrink)
The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all infinite (...) sets. However, only Henkin's proposition equivalent to an internal position to infinity is consistent . This can be retraced back to set theory and its axioms, where that of choice is a key. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that some essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, these phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A special kind of invariance to the axiom of choice shared by quantum mechanics is discussed to be involved that border between the completeness and incompleteness of infinity in a consistent way. The so-called paradox of Albert Einstein, Boris Podolsky, and Nathan Rosen is interpreted entirely in the same terms only of set theory. Quantum computer can demonstrate especially clearly the privilege of the internal position, or " observer'' , or "user" to infinity implied by Henkin's proposition as the only consistent ones as to infinity. An essential area of contemporary knowledge may be synthesized from a single viewpoint. (shrink)
The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of QuantumComputing, and we point out how its Super-Turing potentialities derive (...) from an incomputable information source in accordance with Bell’s constraints. On condition that we give up the formal concept of “universality”, the possibility to realize quantum oracles is reachable. In this way computation is led back to the logic of physical world. (shrink)
In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...) I believe, that we consider how space itself relates to reality, and how other so-called "spaces" used in physics relate to reality. In chapter 2, I compare space and space-time to other spaces used in physics, such as configuration space, phase space and Hilbert space. I support what is known as the "property view" of space, opposing both the traditional views of space and space-time, substantivalism and relationism. I argue that all these spaces are property spaces. After examining the relationships of these spaces to causality, I argue that configuration space has, due to its role in quantum mechanics, a special status in the microscopic world similar to the status of position space in the macroscopic world. In chapter 3, prespace itself is considered. One way of approaching this structure is through the comparison of the prespace structure with a computational system, in particular to a cellular automaton, in which space or space-time and all other physical quantities are broken down into discrete units. I suggest that one way open for a prespace metaphysics can be found if physics is made fully discrete in this way. I suggest as a heuristic principle that the physical laws of our world are such that the computational cost of implementing those laws on an arbitrary computational system is minimized, adapting a heuristic principle of this type proposed by Feynman. In chapter 4, some of the ideas of the previous chapters are applied in an examination of the physics and metaphysics of quantum theory. I first discuss the "measurement problem" of quantum mechanics: this problem and its proposed solution are the primary subjects of chapter 4. It turns out that considering how quantum theory could be made fully discrete leads naturally to a suggestion of how standard linear quantum mechanics could be modified to give rise to a solution to the measurement problem. The computational heuristic principle reinforces the same solution. I call the modified quantum mechanics Critical Complexity Quantum Mechanics (CCQM). I compare CCQM with some of the other proposed solutions to the measurement problem, in particular the spontaneous localization model of Ghirardi, Rimini and Weber. Finally, in chapters 5 and 6, I argue that the measure of complexity of quantum mechanical states I introduce in CCQM also provides a new definition of entropy for quantum mechanics, and suggests a solution to the problem of providing an objective foundation for statistical mechanics, thermodynamics, and the arrow of time. (shrink)
The problem of emergence in physical theories makes necessary to build a general theory of the relationships between the observed system and the observing system. It can be shown that there exists a correspondence between classical systems and computational dynamics according to the Shannon-Turing model. A classical system is an informational closed system with respect to the observer; this characterizes the emergent processes in classical physics as phenomenological emergence. In quantum systems, the analysis based on the computation theory fails. (...) It is here shown that a quantum system is an informational open system with respect to the observer and able to exhibit processes of observational, radical emergence. Finally, we take into consideration the role of computation in describing the physical world. (shrink)
Practical quantumcomputing devices and their applications to AI in particular are presently mostly speculative. Nevertheless, questions about whether this future technology, if achieved, presents any special ethical issues are beginning to take shape. As with any novel technology, one can be reasonably confident that the challenges presented by "quantum AI" will be a mixture of something new and something old. Other commentators (Sevilla & Moreno 2019), have emphasized continuity, arguing that quantumcomputing does not (...) substantially affect approaches to value alignment methods for AI, although they allow that further questions arise concerning governance and verification of quantum AI applications. In this brief paper, we turn our attention to the problem of identifying as-yet-unknown discontinuities that might result from quantum AI applications. Wise development, introduction, and use of any new technology depends on successfully anticipating new modes of failure for that technology. This requires rigorous efforts to break systems in protected sandboxes, and it must be conducted at all stages of technology design, development, and deployment. Such testing must also be informed by technical expertise but cannot be left solely to experts in the technology because of the history of failures to predict how non-experts will use or adapt to new technologies. This interplay between experts and non-experts may be particularly acute for quantum AI because quantum mechanics is notoriously difficult to understand. (As Richard Feynman quipped, "Anyone who claims to understand quantum mechanics is either lying or crazy.") We will discuss the extent to which the difficulties in understanding the physics underlying quantumcomputing challenges attempts to anticipate new failure modes that might be introduced in AI applications intended for unsupervised operation in the public sphere. (shrink)
The viewpoint that consciousness, including feeling, could be fully expressed by a computational device is known as strong artificial intelligence or strong AI. Here I offer a defense of strong AI based on machine-state functionalism at the quantum level, or quantum-state functionalism. I consider arguments against strong AI, then summarize some counterarguments I find compelling, including Torkel Franzén’s work which challenges Roger Penrose’s claim, based on Gödel incompleteness, that mathematicians have nonalgorithmic levels of “certainty.” Some consequences of strong (...) AI are then considered. A resolution is offered of some problems including John Searle’s Chinese Room problem and the problem of consciousness propagation under isomorphism. (shrink)
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...) and even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility, incompleteness, the limits of computation, and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things, a non- quantum mechanical uncertainty principle and a proof of monotheism. There are obvious connections to the classic work of Chaitin, Solomonoff, Komolgarov and Wittgenstein and to the notion that no program (and thus no device) can generate a sequence (or device) with greater complexity than it possesses. One might say this body of work implies atheism since there cannot be any entity more complex than the physical universe and from the Wittgensteinian viewpoint, ‘more complex’ is meaningless (has no conditions of satisfaction, i.e., truth-maker or test). Even a ‘God’ (i.e., a ‘device’with limitless time/space and energy) cannot determine whether a given ‘number’ is ‘random’, nor find a certain way to show that a given ‘formula’, ‘theorem’ or ‘sentence’ or ‘device’ (all these being complex language games) is part of a particular ‘system’. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 2nd ed (2019) and Suicidal Utopian Delusions in the 21st Century 4th ed (2019) . (shrink)
The essential biological processes that sustain life are catalyzed by protein nano-engines, which maintain living systems in far-from-equilibrium ordered states. To investigate energetic processes in proteins, we have analyzed the system of generalized Davydov equations that govern the quantum dynamics of multiple amide I exciton quanta propagating along the hydrogen-bonded peptide groups in α-helices. Computational simulations have confirmed the generation of moving Davydov solitons by applied pulses of amide I energy for protein α-helices of varying length. The stability and (...) mobility of these solitons depended on the uniformity of dipole-dipole coupling between amide I oscillators, and the isotropy of the exciton-phonon interaction. Davydov solitons were also able to quantum tunnel through massive barriers, or to quantum interfere at collision sites. The results presented here support a nontrivial role of quantum effects in biological systems that lies beyond the mechanistic support of covalent bonds as binding agents of macromolecular structures. Quantum tunneling and interference of Davydov solitons provide catalytically active macromolecular protein complexes with a physical mechanism allowing highly efficient transport, delivery, and utilization of free energy, besides the evolutionary mandate of biological order that supports the existence of such genuine quantum phenomena, and may indeed demarcate the quantum boundaries of life. (shrink)
Quantumcomputing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, “the Google Quantum Team”) report the results of experiments that purport to demonstrate “quantum supremacy” – the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they (...) do not. In the following, we provide an overview of the Google Quantum Team’s experiments, then identify some open questions in the quest to demonstrate quantum supremacy. (shrink)
This second volume is a continuation of the first volume’s 20th century conceptual foundations of quantum physics extending its view to the principles and research fields of the 21st century. A summary of the standard concepts, from modern advanced experimental tests of 'quantum ontology’ to the interpretations of quantum mechanics, the standard model of particle physics, and the mainstream quantum gravity theories. A state-of-the-art treatise that reports on the recent developments in quantumcomputing, classical (...) and quantum information theory, the black holes information paradox and the holographic principle to quantum cosmology, with some attention on contemporary themes such as the Bose-Einstein condensates as also to the more speculative areas of quantum biology and quantum consciousness. A final chapter on the connections between the quantum realm and philosophical idealism concludes this volume. Considering how the media (sometimes also physicists) present quantum theory, which focuses only on highly dubious ideas and speculations backed by no evidence or, worse, promote pseudo-scientific hypes that fall regularly in and out of fashion, this is a ‘vademecum’ for those who look for a serious introduction and deeper understanding of the 21st century quantum theory. All topics are explained with a concise but rigorous intermediate level style which may, at times, require some effort. However, you will finally acquire an unparalleled background in the conceptual foundations of quantum physics, enabling you to distinguish between the real science backed by experimental facts and mere speculative interpretations. (shrink)
Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic (...) sense) to the notion of a subset. Hence the Boolean logic of subsets has a dual logic of partitions. Then the dual progression is from that logic of partitions to the quantum logic of direct-sum decompositions (i.e., the vector space version of a set partition) of a general vector space--which can then be specialized to the direct-sum decompositions of a Hilbert space. This allows the logic to express measurement by any self-adjoint operators rather than just the projection operators associated with subspaces. In this introductory paper, the focus is on the quantum logic of direct-sum decompositions of a finite-dimensional vector space (including such a Hilbert space). The primary special case examined is finite vector spaces over ℤ₂ where the pedagogical model of quantum mechanics over sets (QM/Sets) is formulated. In the Appendix, the combinatorics of direct-sum decompositions of finite vector spaces over GF(q) is analyzed with computations for the case of QM/Sets where q=2. (shrink)
Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should (...) be equated to a well-ordered set after measurement and thus requires the axiom of choice. Quantum invariance underlies quantum information and reveals it as the relation of an unordered quantum “much” (i.e. a coherent state) and a well-ordered “many” of the measured results (i.e. a statistical ensemble). It opens up to a new horizon, in which all physical processes and phenomena can be interpreted as quantum computations realizing relevant operations and algorithms on quantum information. All phenomena of entanglement can be described in terms of the so defined quantum information. Quantum invariance elucidates the link between general relativity and quantum mechanics and thus, the problem of quantum gravity. (shrink)
Resonance can trigger of a series of quantum events and therefore induce several changes related to consciousness at micro as well as macro level within a living system. Therapeutic effects have been observed in several religious meditative and healing practices, which use resonance in the form of chanting and prayers. A living system may have many resonant frequencies due to their degrees of freedom, where each can vibrate as a harmonic oscillator supporting the progression of vibrations as waves that (...) moves as a ripple within the whole system. A cell as an organism or cells in multicellular organisms act as resonating bodies that trigger of oscillation of oscillatory proteins of the cytoskeletal network. The resulting protein conformational changes generate a conscious moment that is regulated via electron tunneling, delocalization and superposition in space time geometry. Consciousness or sentience are phenomenal characteristics of every cell and even though we don’t know the “why” we surely can predict and hypothesize the “how” of consciousness to be quantum computed, which enables the cell to understand and judge perceptions giving it a prospect to behave as per will. (shrink)
Is quantum mechanics about ‘states’? Or is it basically another kind of probability theory? It is argued that the elementary formalism of quantum mechanics operates as a well-justified alternative to ‘classical’ instantiations of a probability calculus. Its providing a general framework for prediction accounts for its distinctive traits, which one should be careful not to mistake for reflections of any strange ontology. The suggestion is also made that quantum theory unwittingly emerged, in Schrödinger’s formulation, as a ‘lossy’ (...) by-product of a quantum-mechanical variant of the Hamilton-Jacobi equation. As it turns out, the effectiveness of quantum theory qua predictive algorithm makes up for the computational impracticability of that master equation. (shrink)
In my 2013 article, “A New Theory of Free Will”, I argued that several serious hypotheses in philosophy and modern physics jointly entail that our reality is structurally identical to a peer-to-peer (P2P) networked computer simulation. The present paper outlines how quantum phenomena emerge naturally from the computational structure of a P2P simulation. §1 explains the P2P Hypothesis. §2 then sketches how the structure of any P2P simulation realizes quantum superposition and wave-function collapse (§2.1.), quantum indeterminacy (§2.2.), (...) wave-particle duality (§2.3.), and quantum entanglement (§2.4.). Finally, §3 argues that although this is by no means a philosophical proof that our reality is a P2P simulation, it provides ample reasons to investigate the hypothesis further using the methods of computer science, physics, philosophy, and mathematics. (shrink)
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...) independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility,incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non-quantum mechanical uncertainty principle and a proof of monotheism. (shrink)
Viewed in the light of the remarkable performance of ‘Watson’ - IBMs proprietary artificial intelligence computer system capable of answering questions posed in natural language - on the US general knowledge quiz show ‘Jeopardy’, we review two experiments on formal systems - one in the domain of quantum physics, the other involving a pictographic languaging game - whereby behaviour seemingly characteristic of domain understanding is generated by the mere mechanical application of simple rules. By re-examining both experiments in the (...) context of Searle’s Chinese Room Argument, we suggest their results merely endorse Searle’s core intuition: that ‘syntactical manipulation of symbols is not sufficient for semantics’. Although, pace Watson, some artificial intelligence practitioners have suggested that more complex, higher-level operations on formal symbols are required to instantiate understanding in computational systems, we show that even high-level calls to Google translate would not enable a computer qua ‘formal symbol processor’ to understand the language it processes. We thus conclude that even the most recent developments in ‘quantum linguistics’ will not enable computational systems to genuinely understand natural language. (shrink)
Quantum entanglement lies at the foundation of quantum mechanics. Witness Schrödinger highlighting entanglement with his puzzling cat thought experiment and Einstein deriding it as “spooky action at a distance.” Nonetheless, quantum entanglement has been verified experimentally and is essential for quantum information and quantumcomputing. The quantum superposition principle, together with entanglement, dramatically contrasts the quantum from the classical description of reality. We attempt to integrate physical reality with a Christian worldview.
Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the (...) border between them. A special kind of invariance to the axiom of choice shared by quantum mechanics is discussed to be involved that border between the completeness and incompleteness of infinity in a consistent way. The so-called paradox of Albert Einstein, Boris Podolsky, and Nathan Rosen is interpreted entirely in the same terms only of set theory. Quantum computer can demonstrate especially clearly the privilege of the internal position, or “observer”, or “user” to infinity implied by Henkin’s proposition as the only consistent ones as to infinity. (shrink)
The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble (...) after measurement. Quantum in-variance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. A set-theory corollary is the curious in-variance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. However the above equivalence requires it to be equated to a well-ordered set after measurement and thus requires the axiom of choice for it to be able to be obtained. Quantum in-variance underlies quantum information and reveals it as the relation of an unordered quantum “much” (i.e. a coherent state) and a well-ordered “many” of the measured results (i.e. a statistical ensemble). It opens up to a new horizon, in which all physical processes and phenomena can be interpreted as quantum computations realizing relevant operations and algorithms on quantum information. All phenomena of entanglement can be described in terms of the so defined quantum information. Quantum in-variance elucidates the link between general relativity and quantum mechanics and thus, the problem of quantum gravity. The non-locality of quantum information unifies the exact position of any space-time point of a smooth trajectory and the common possibility of all space-time points due to a quantum leap. This is deduced from quantum in-variance. Epistemology involves the relation of ordering and thus a generalized kind of information, quantum one, to explain the special features of the cognition in quantum mechanics. (shrink)
Consciousness occurs when one is in a state of awareness of one’s self and the external environment. Quantum consciousness is computed within the cytoskeleton of the cells; basic units of life which comprise of unicellular and multicellular animal life. Consciousness has always been linked to the nervous system but there are several studies that have recorded conscious behaviors in animals with and without nerve cells. Animal behavior is represented as conscious moment, which occurs due to an event, which may (...) be intentional or unintentional. The existence of consciousness in animals can be based on the exhibited behaviors and its comparison to multifaceted conscious behaviors observed in higher beings; which is driven by protein conformational changes within the cytoskeleton network of cells, performed within the domains of space time geometry. (shrink)
The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why (...) nonreductive approaches to solving the multiple- computations problem, and in particular why computational externalism, are dualistic in the sense that they imply that nonphysical facts in the environment of a computing system single out the computation. We discuss certain attempts to dissolve Putnam’s unrestricted result by appealing to systems with certain kinds of input and output states as a special case of computational externalism, and show why this approach is not workable without collapsing to behaviorism. We conclude with some remarks about the nonphysical nature of mainstream approaches to both statistical mechanics and the quantum theory of measurement with respect to the singling out of partitions and observables. (shrink)
In this paper we investigate with a case study from chemistry under what conditions a simulation can serve as a surrogate for an experiment. The case-study concerns a simulation of H2-formation in outer space. We find that in this case the simulation can act as a surrogate for an experiment, because there exists comprehensive theoretical background knowledge in form of quantum mechanics about the range of phenomena to which the investigated process belongs and because any particular modelling assumptions as (...) can be justified. If these requirements are met then direct empirical validation may even be dispensable. We conjecture that this is not the case in the absence of comprehensive theoretical background knowledge. (shrink)
Background: how mind functions is subject to continuing scientific discussion. A simplistic approach says that, since no convincing way has been found to model subjective experience, mind cannot exist. A second holds that, since mind cannot be described by classical physics, it must be described by quantum physics. Another perspective concerns mind's hypothesized ability to interact with the world of quanta: it should be responsible for reduction of quantum wave packets; physics producing 'Objective Reduction' is postulated to form (...) the basis for mind-matter interactions. This presentation describes results derived from a new approach to these problems. It is based on well-established biology involving physics not previously applied to the fields of mind, or consciousness studies, that of critical feedback instability. -/- Methods: 'self-organized criticality' in complexity biology places system loci of control at critical instabilities, physical properties of which, including information properties, are presented. Their elucidation shows that they can model hitherto unexplained properties of experience. -/- Results: All results depend on physical properties of critical instabilities. First, at least one feed-back or feed-forward loop must have feedback gain, g = 1: information flows round the loop impress perfect images of system states back on themselves: they represent processes of perfect self-observation. This annihilates system quanta: system excitations are instability fluctuations, which cannot be quantized. Major results follow: -/- 1. Information vectors representing criticality states must include at least one attached information loop denoting self-observation. -/- 2. Such loop structures are attributed a function, 'registering the state's own existence', explaining -/- a. Subjective 'awareness of one's own presence' -/- b. How content-free states of awareness can be remembered (Jon Shear) -/- c. Subjective experience of time duration (Immanuel Kant) -/- d. The 'witness' property of experience – often mentioned by athletes 'in the zone' -/- e. The natural association between consciousness and intelligence -/- This novel, physically and biologically sound approach seems to satisfactorily model subjectivity. -/- Further significant results follow: -/- 1. Registration of external information in excited states of systems at criticality reduces external wave-packets: the new model exhibits 'Objective Reduction' of wave packets. -/- 2. High internal coherence (postulated by Domash & Penrose) leading to a. Non-separable information vector bundles. b. Non-reductive states (Chalmers's criterion for experience). -/- 3. Information that is: a. encoded in coherence negentropy; b. non-digitizable, and therefore c. computationally without digital equivalent (posited by Penrose). -/- Discussion and Conclusions: instability physics implies anharmonic motion, preventing excitation quantization, and totally different from the quantum physics of simple harmonic motion at stability. Instability excitations are different from anything hitherto conceived in information science. They can model aspects of mind never previously treated, including genuine subjectivity, objective reduction of wave-packets, and inter alia all properties given above. (shrink)
मैं कंप्यूटर के रूप में गणना और ब्रह्मांड की सीमा के कई हाल ही में चर्चा पढ़ लिया है, polymath भौतिक विज्ञानी और निर्णय सिद्धांतकार डेविड Wolpert के अद्भुत काम पर कुछ टिप्पणी खोजने की उम्मीद है, लेकिन एक भी प्रशस्ति पत्र नहीं मिला है और इसलिए मैं यह बहुत संक्षिप्त मौजूद सारांश. Wolpert कुछ आश्चर्यजनक असंभव या अधूरापन प्रमेयों साबित कर दिया (1992 से 2008-देखें arxiv dot org) अनुमान के लिए सीमा पर (कम्प्यूटेशन) कि इतने सामान्य वे गणना कर (...) डिवाइस से स्वतंत्र हैं, और यहां तक कि भौतिकी के नियमों से स्वतंत्र, इसलिए वे कंप्यूटर, भौतिक विज्ञान और मानव व्यवहार में लागू होते हैं. वे कैंटर विकर्णीकरण का उपयोग करते हैं, झूठा विरोधाभास और worldlines प्रदान करने के लिए क्या ट्यूरिंग मशीन थ्योरी में अंतिम प्रमेय हो सकता है, और प्रतीत होता है असंभव, अधूरापन, गणना की सीमा में अंतर्दृष्टि प्रदान करते हैं, और ब्रह्मांड के रूप में कंप्यूटर, सभी संभव ब्रह्मांडों और सभी प्राणियों या तंत्र में, उत्पादन, अन्य बातों के अलावा, एक गैर क्वांटम यांत्रिक अनिश्चितता सिद्धांत और एकेश्वरवाद का सबूत. वहाँ Chaitin, Solomonoff, Komolgarov और Wittgenstein के क्लासिक काम करने के लिए स्पष्ट कनेक्शन कर रहे हैं और धारणा है कि कोई कार्यक्रम (और इस तरह कोई डिवाइस) एक दृश्य उत्पन्न कर सकते हैं (या डिवाइस) अधिक से अधिक जटिलता के साथ यह पास से. कोई कह सकता है कि काम के इस शरीर का अर्थ नास्तिकता है क्योंकि भौतिक ब्रह्मांड से और विटगेनस्टीनियन दृष्टिकोण से कोई भी इकाई अधिक जटिल नहीं हो सकती है, 'अधिक जटिल' अर्थहीन है (संतोष की कोई शर्त नहीं है, अर्थात, सत्य-निर्माता या परीक्षण)। यहां तक कि एक 'भगवान' (यानी, असीम समय/स्थान और ऊर्जा के साथ एक 'डिवाइस' निर्धारित नहीं कर सकता है कि क्या एक दिया 'संख्या' 'यादृच्छिक' है, और न ही एक निश्चित तरीका है दिखाने के लिए कि एक दिया 'सूत्र', 'प्रमेय' या 'वाक्य' या 'डिवाइस' (इन सभी जटिल भाषा जा रहा है) खेल) एक विशेष 'प्रणाली' का हिस्सा है. आधुनिक दो systems दृश्यसे मानव व्यवहार के लिए एक व्यापक अप करने के लिए तारीख रूपरेखा इच्छुक लोगों को मेरी पुस्तक 'दर्शन, मनोविज्ञान, मिनडी और लुडविगमें भाषा की तार्किक संरचना से परामर्श कर सकते हैं Wittgenstein और जॉन Searle '2 एड (2019). मेरे लेखन के अधिक में रुचि रखने वालों को देख सकते हैं 'बात कर रहेबंदर- दर्शन, मनोविज्ञान, विज्ञान, धर्म और राजनीति पर एक बर्बाद ग्रह --लेख और समीक्षा 2006-2019 2 ed (2019) और आत्मघाती यूटोपियान भ्रम 21st मेंसदी 4वें एड (2019) . (shrink)
We consider time as a fuzzy concept. Based on this, the Fuzzy Time-Particle interpretation Of Quantum Mechanics is introduced as an interpretation of Quantum Mechanics [4],[5],[6]. Here, we show how to compute the function associated to Fuzzy time.
David Bohm, in his "causal theory", made the correct Hegelian synthesis of Einstein's thesis that there is a "there" there, and Bohr's antithesis of "thinglessness" (Nick Herbert’s term). Einstein was a materialist and Bohr was an idealist. Bohm showed that quantum reality has both. This is “physical dualism” (my term). Physical dualism may be a low energy approximation to a deeper monism of cosmic consciousness called "the super-implicate order" (Bohm and Hiley’s term), “pregeometry” (Wheeler’s term), “substratum” (Dirac’s term), “funda-MENTAL (...) space” (Hameroff’s term), “Chi” (Chinese medicine & Falun Gong) etc., but for our immediate pragmatic purpose of constructing naturally conscious nano-computers and of virtually reverse engineering alleged reports of propellantless UFO propulsion (French Intelligence Report, 1999 [email protected] Vol. 5, No. 11, Part 1 -- August 1, 1999 & NIDS report "Best UFO Cases - Europe", I. Von Ludwiger) to the stars and beyond, physical dualism will work. (shrink)
The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum (...) theory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
In his entry on "Quantum Logic and Probability Theory" in the Stanford Encyclopedia of Philosophy, Alexander Wilce (2012) writes that "it is uncontroversial (though remarkable) the formal apparatus quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over the 'quantum logic' of projection operators on a Hilbert space." For a long time, Patrick Suppes has opposed this view (see, for example, (...) the paper collected in Suppes and Zanotti (1996). Instead of changing the logic and moving from a Boolean algebra to a non-Boolean algebra, one can also 'save the phenomena' by weakening the axioms of probability theory and work instead with upper and lower probabilities. However, it is fair to say that despite Suppes' efforts upper and lower probabilities are not particularly popular in physics as well as in the foundations of physics, at least so far. Instead, quantum logic is booming again, especially since quantum information and computation became hot topics. Interestingly, however, imprecise probabilities are becoming more and more popular in formal epistemology as recent work by authors such as James Joye (2010) and Roger White (2010) demonstrates. (shrink)
This paper deals with the philosophical issues of the notion of nothingness and pre-inflationary stage of the universe in physical cosmology. We presuppose that, in addition to cosmological limits, there may be both anthropic and computational limits for our ability to understand and replicate the conditions before the Big Bang. That is, the very notion of nothingness and pre-Big Bang state may be conceptually, but not computationally grasped.
Bell-type inequalities are proven using oversimplified probabilistic models and/or counterfactual definiteness (CFD). If setting-dependent variables describing measuring instruments are correctly introduced, none of these inequalities may be proven. In spite of this, a belief in a mysterious quantum nonlocality is not fading. Computer simulations of Bell tests allow people to study the different ways in which the experimental data might have been created. They also allow for the generation of various counterfactual experiments’ outcomes, such as repeated or simultaneous measurements (...) performed in different settings on the same “photon-pair”, and so forth. They allow for the reinforcing or relaxing of CFD compliance and/or for studying the impact of various “photon identification procedures”, mimicking those used in real experiments. Data samples consistent with quantum predictions may be generated by using a specific setting-dependent identification procedure. It reflects the active role of instruments during the measurement process. Each of the setting-dependent data samples are consistent with specific setting-dependent probabilistic models which may not be deduced using non-contextual local realistic or stochastic hidden variables. In this paper, we will be discussing the results of these simulations. Since the data samples are generated in a locally causal way, these simulations provide additional strong arguments for closing the door on quantum nonlocality. (shrink)
Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is (...) not Turing machine – Is continuality universal? – Diffeomorphism and velocity – Einstein’s general principle of relativity – „Mach’s principle“ – The Skolemian relativity of the discrete and the continuous – The counterexample in § 6 of their paper – About the classical tautology which is untrue being replaced by the statements about commeasurable quantum-mechanical quantities – Logical hidden parameters – The undecidability of the hypothesis about hidden parameters – Wigner’s work and и Weyl’s previous one – Lie groups, representations, and psi-function – From a qualitative to a quantitative expression of relativity − psi-function, or the discrete by the random – Bartlett’s approach − psi-function as the characteristic function of random quantity – Discrete and/ or continual description – Quantity and its “digitalized projection“ – The idea of „velocity−probability“ – The notion of probability and the light speed postulate – Generalized probability and its physical interpretation – A quantum description of macro-world – The period of the as-sociated de Broglie wave and the length of now – Causality equivalently replaced by chance – The philosophy of quantum information and religion – Einstein’s thesis about “the consubstantiality of inertia ant weight“ – Again about the interpretation of complex velocity – The speed of time – Newton’s law of inertia and Lagrange’s formulation of mechanics – Force and effect – The theory of tachyons and general relativity – Riesz’s representation theorem – The notion of covariant world line – Encoding a world line by psi-function – Spacetime and qubit − psi-function by qubits – About the physical interpretation of both the complex axes of a qubit – The interpretation of the self-adjoint operators components – The world line of an arbitrary quantity – The invariance of the physical laws towards quantum object and apparatus – Hilbert space and that of Minkowski – The relationship between the coefficients of -function and the qubits – World line = psi-function + self-adjoint operator – Reality and description – Does a „curved“ Hilbert space exist? – The axiom of choice, or when is possible a flattening of Hilbert space? – But why not to flatten also pseudo-Riemannian space? – The commutator of conjugate quantities – Relative mass – The strokes of self-movement and its philosophical interpretation – The self-perfection of the universe – The generalization of quantity in quantum physics – An analogy of the Feynman formalism – Feynman and many-world interpretation – The psi-function of various objects – Countable and uncountable basis – Generalized continuum and arithmetization – Field and entanglement – Function as coding – The idea of „curved“ Descartes product – The environment of a function – Another view to the notion of velocity-probability – Reality and description – Hilbert space as a model both of object and description – The notion of holistic logic – Physical quantity as the information about it – Cross-temporal correlations – The forecasting of future – Description in separable and inseparable Hilbert space – „Forces“ or „miracles“ – Velocity or time – The notion of non-finite set – Dasein or Dazeit – The trajectory of the whole – Ontological and onto-theological difference – An analogy of the Feynman and many-world interpretation − psi-function as physical quantity – Things in the world and instances in time – The generation of the physi-cal by mathematical – The generalized notion of observer – Subjective or objective probability – Energy as the change of probability per the unite of time – The generalized principle of least action from a new view-point – The exception of two dimensions and Fermat’s last theorem. (shrink)
The paper explores whether David Bohm’ s proposal about quantum theoretical active information, and the mind-matter scheme he developed on the basis of it, can help us to explain consciousness. Here it is important to acknowledge that other researchers in philosophy of mind and consciousness studies have also made use of the concept of information in their theories of mind and consciousness. For example, Dretske and Barwise and Seligman have explored the possibility that information in the sense of factual (...) semantic contents can be grounded in environmental information. For Dretske this was an important part of his attempts to give a naturalistic account of sensory experiences, qualia and consciousness. During recent years the notion of information has been used to explain consciousness most notably by David Chalmers, as well as by Giulio Tononi and his co-workers. The strategy of this paper will be to first describe Bohm’ s mind-matter scheme, and then to briefl y consider Chalmers’ and Tononi et al.’ s ideas in the light of this scheme. (shrink)
Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...) the instants of time as Fuzzy numbers. In physics, though there are revolutionary ideas on the time concept like B theories in contrast to A theory also about central concepts like space, momentum… it is a long time that these concepts are changed, but time is considered classically in all well-known and established physics theories. Seemingly, we stick to the classical time concept in all fields of science and we have a vast inertia to change it. Our goal in this article is to provide some bases why it is rational and reasonable to change and modify this picture. Here, the central point is the modified version of “Unexpected Hanging” paradox as it is described in "Is classical Mathematics appropriate for theory of Computation".This modified version leads us to a contradiction and based on that it is presented there why some problems in Theory of Computation are not solved yet. To resolve the difficulties arising there, we have two choices. Either “choosing” a new type of Logic like “Para-consistent Logic” to tolerate contradiction or changing and improving the time concept and consequently to modify the “Turing Computational Model”. Throughout this paper, we select the second way for benefiting from saving some aspects of Classical Logic. In chapter 2, by applying quantum Mechanics and Schrodinger equation we compute the associated fuzzy number to time. (shrink)
Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...) matter-energy.” Dr Horton, his collaborator in the novel replies: “If the universe consists of energy and information, then the Trigger somehow alters the information envelope of certain substances –“. “Alters it, scrambles it, overwhelms it, destabilizes it” Brohier adds. There is a scientific debate whether or how far chemistry is fundamentally reducible to quantum mechanics. Nevertheless, the fact that many essential chemical properties and reactions are at least partly representable in terms of quantum mechanics is doubtless. For the quantum mechanics itself has been reformulated as a theory of a special kind of information, quantum information, chemistry might be in turn interpreted in the same terms. Wave function, the fundamental concept of quantum mechanics, can be equivalently defined as a series of qubits, eventually infinite. A qubit, being defined as the normed superposition of the two orthogonal subspaces of the complex Hilbert space, can be interpreted as a generalization of the standard bit of information as to infinite sets or series. All “forces” in the Standard model, which are furthermore essential for chemical transformations, are groups [U(1),SU(2),SU(3)] of the transformations of the complex Hilbert space and thus, of series of qubits. One can suggest that any chemical substances and changes are fundamentally representable as quantum information and its transformations. If entanglement is interpreted as a physical field, though any group above seems to be unattachable to it, it might be identified as the “Triger field”. It might cause a direct transformation of any chemical substance by from a remote distance. Is this possible in principle? (shrink)
Mathematical models are a well established tool in most natural sciences. Although models have been neglected by the philosophy of science for a long time, their epistemological status as a link between theory and reality is now fairly well understood. However, regarding the epistemological status of mathematical models in the social sciences, there still exists a considerable unclarity. In my paper I argue that this results from specific challenges that mathematical models and especially computer simulations face in the social sciences. (...) The most important difference between the social sciences and the natural sciences with respect to modeling is that in the social sciences powerful and well confirmed background theories (like Newtonian mechanics, quantum mechanics or the theory of relativity in physics) do not exist in the social sciences. Therefore, an epistemology of models that is formed on the role model of physics may not be appropriate for the social sciences. I discuss the challenges that modeling faces in the social sciences and point out their epistemological consequences. The most important consequences are that greater emphasis must be placed on empirical validation than on theoretical validation and that the relevance of purely theoretical simulations is strongly limited. (shrink)
The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to (...) try fabricating the paradox not by time but in some other linear ordering or the concept of space. Interestingly, the attempts to have similar contradiction by the other concepts like space and linear ordering, is failed. It is remarkable that, the paradox is considered either Epistemological or Logical traditionally, but by new considerations the new version of paradox should be considered as either Logical or Physical paradox. Hence, in order to change our Computational Model, it is natural to change the concept of time, but how? We start from some models that are different from the classical one but they are intuitively plausible. The idea of model is somewhat introduced by Brouwer and Husserl [3]. This model doesn’t refute the paradox, since the paradox and the associated contradiction would be repeated in this new model. The model is introduced in [2]. Here we give some more explanations. (shrink)
Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (TOE) (...) describing and unifying all the forces in physics, of which itself is also required by the known physical laws. With infinite computational resources, the dead can be resurrected--never to die again--via perfect computer emulation of the multiverse from its start at the Big Bang. Miracles are also physically allowed via electroweak quantum tunneling controlled by the Omega Point cosmological singularity. The Omega Point is a different aspect of the Big Bang cosmological singularity--the first cause--and the Omega Point has all the haecceities claimed for God in the traditional religions. -/- From this analysis, conclusions are drawn regarding the social, ethical, economic and political implications of the Omega Point cosmology. (shrink)
John Searle and Roger Penrose are two staunch critics of computationalism who nonetheless believe that with the right framework the mind can be naturalized. While they may be successful in showing the shortcomings of computationalism, I argue that their alternative non-computational frameworks equally fail to carry out the project to naturalize the mind. The main reason is their failure to resolve some fundamental incompatibilities between mind and science. Searle tries to resolve the incompatibility between the subjectivity of consciousness and the (...) objectivity of science by means of conceptual clarification. He, however, fails to deal with the concepts crucial to this incompatibility, namely, the publicness of scientific knowledge and the privacy of psychological knowledge. Penrose tries to resolve the incompatibility between the non-computationality of psychological process and the computationality of scientific process by expanding the scope of science through some radical changes in quantum physics. His strategy, however, has the danger of trivializing the distinction between science and non-science thereby putting into question the very value of the project to naturalize the mind. In addition, the feasibility of this strategy remains dubious in light of the mysteries that still surround quantum physics. (shrink)
This is a presentation about the impacts of Logic and Theory of Computation. It starts by some explanations about Theory of Computation and its relations with the other subjects in science. Then we have some explanations about paradoxes and some historical points. In continuation, we present some of the most important paradoxes. Forthcoming, Five subjects around the relations between Logic and Theory of computation is introduced. Finally, we present a new approach to solve P vs NP problem via Paradoxes (Presentation (...) 6/20/2022 In Persian, Online seminar of The Iranian Association for Logic (IAL) . (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.