Results for 'quantum intepretations,'

1000+ found
Order:
  1. Philosophy and Interpretations of Quantum Non-Locality.Michele Caponigro - manuscript
    In this brief paper, we argue about some epistemological positions about quantum non-locality.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Quantum Mechanics as the Solution to a Maximization Problem on the Entropy of All Quantum Measurements.Harvey-Tremblay Alexandre - manuscript
    This work presents a novel formulation of quantum mechanics as the solution to an entropy maximization problem constrained by empirical measurement outcomes. By treating the complete set of possible measurement outcomes as an optimization constraint, our entropy maximization problem derives the axioms of quantum mechanics as theorems, demonstrating that the theory's mathematical structure is the least biased probability measure consistent with the observed data. This approach reduces the foundation of quantum mechanics to a single axiom, the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  5. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  6. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  7. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. Quantum no-go theorems and consciousness.Danko Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  13. Quantum Measure from a Philosophical Viewpoint.Vasil Penchev - 2014 - Journal of Siberian Federal University. Humanities and Social Sciences 7 (1):4-19.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Ethics of Intepretation in Political Theory and Intellectual History.Michael L. Frazer - 2019 - The Review of Politics 81 (1):77-99.
    Scholars studying classic political texts face an important decision: Should these texts be read as artifacts of history or as sources for still-valid insights about politics today? Competing historical and “presentist” approaches to political thought do not have a methodological dispute—that is, a disagreement about the most effective scholarly means to an agreed-upon end. They instead have an ethical dispute about the respective value of competing activities that aim at different purposes. This article examines six ethical arguments, drawn primarily from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. From Quantum Entanglement to Spatiotemporal Distance.Alyssa Ney - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime. Oxford: Oxford University Press.
    Within the field of quantum gravity, there is an influential research program developing the connection between quantum entanglement and spatiotemporal distance. Quantum information theory gives us highly refined tools for quantifying quantum entanglement such as the entanglement entropy. Through a series of well-confirmed results, it has been shown how these facts about the entanglement entropy of component systems may be connected to facts about spatiotemporal distance. Physicists are seeing these results as yielding promising methods for better (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Can quantum analogies help us to understand the process of thought? [1st ed].Paavo Pylkkänen - 2004 - In Gordon Globus, K. Pribram & G. Vitiello (eds.), Being and Brain. At the Boundary between Science, Philosophy, Language and Arts. Amsterdam: John Benjamins. pp. 165-195.
    A number of researchers today make an appeal to quantum physics when trying to develop a satisfactory account of the mind, an appeal still felt to be controversial by many. Often these "quantum approaches" try to explain some well-known features of conscious experience (or mental processes more generally), thus using quantum physics to enrich the explanatory framework or explanans used in consciousness studies and cognitive science. This paper considers the less studied question of whether quantum physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Quantum leaps in philosophy of mind.David Bourget - 2004 - Journal of Consciousness Studies 11 (12):17--42.
    I discuss the quantum mechanical theory of consciousness and freewill offered by Stapp (1993, 1995, 2000, 2004). First I show that decoherence-based arguments do not work against this theory. Then discuss a number of problems with the theory: Stapp's separate accounts of consciousness and freewill are incompatible, the interpretations of QM they are tied to are questionable, the Zeno effect could not enable freewill as he suggests because weakness of will would then be ubiquitous, and the holism of measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  18. Quantum Gravity and Mereology: Not So Simple.Sam Baron & Baptiste Le Bihan - 2022 - Philosophical Quarterly 72 (1):19-40.
    A number of philosophers have argued in favour of extended simples on the grounds that they are needed by fundamental physics. The arguments typically appeal to theories of quantum gravity. To date, the argument in favour of extended simples has ignored the fact that the very existence of spacetime is put under pressure by quantum gravity. We thus consider the case for extended simples in the context of different views on the existence of spacetime. We show that the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Can quantum analogies help us to understand the process of thought? [2nd ed.].Paavo Pylkkanen - 2014 - Mind and Matter 12 (1):61-91.
    A number of researchers today make an appeal to quantum physics when trying to develop a satisfactory account of the mind, an appeal still felt to be controversial by many. Often these "quantum approaches" try to explain some well-known features of conscious experience (or mental processes more generally), thus using quantum physics to enrich the explanatory framework or explanans used in consciousness studies and cognitive science. This paper considers the less studied question of whether quantum physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Quantum states for primitive ontologists: A case study.Gordon Belot - 2012 - European Journal for Philosophy of Science 2 (1):67-83.
    Under so-called primitive ontology approaches, in fully describing the history of a quantum system, one thereby attributes interesting properties to regions of spacetime. Primitive ontology approaches, which include some varieties of Bohmian mechanics and spontaneous collapse theories, are interesting in part because they hold out the hope that it should not be too difficult to make a connection between models of quantum mechanics and descriptions of histories of ordinary macroscopic bodies. But such approaches are dualistic, positing a (...) state as well as ordinary material degrees of freedom. This paper lays out and compares some options that primitive ontologists have for making sense of the quantum state. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  22. Quantum gravity, timelessness, and the contents of thought.David Braddon-Mitchell & Kristie Miller - 2019 - Philosophical Studies 176 (7):1807-1829.
    A number of recent theories of quantum gravity lack a one-dimensional structure of ordered temporal instants. Instead, according to many of these views, our world is either best represented as a single three-dimensional object, or as a configuration space composed of such three-dimensional objects, none of which bear temporal relations to one another. Such theories will be empirically self-refuting unless they can accommodate the existence of conscious beings capable of representation. For if representation itself is impossible in a timeless (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  23. Quantum Complementarity: Both Duality and Opposition.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (13):1-6.
    Quantum complementarity is interpreted in terms of duality and opposition. Any two conjugates are considered both as dual and opposite. Thus quantum mechanics introduces a mathematical model of them in an exact and experimental science. It is based on the complex Hilbert space, which coincides with the dual one. The two dual Hilbert spaces model both duality and opposition to resolve unifying the quantum and smooth motions. The model involves necessarily infinity even in any finitely dimensional subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Quantum sensing and quantum engineering: a strategy for acceleration via metascience.Charles Clark, Mayur Gosai, Terry Janssen, Melissa LaDuke, Jobst Landgrebe, Lawrence Pace & Barry Smith - 2023 - Proceedings of Spie: Quantum Sensing, Imaging, and Precision Metrology 12447.
    Research and engineering in the quantum domain involve long chains of activity involving theory development, hypothesis formation, experimentation, device prototyping, device testing, and many more. At each stage multiple paths become possible, and of the paths pursued, the majority will lead nowhere. Our quantum metascience approach provides a strategy which enables all stakeholders to gain an overview of those developments along these tracks, that are relevant to their specific concerns. It provides a controlled vocabulary, built out of terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Quantum-like non-separability of concept combinations, emergent associates and abduction.P. Bruza, K. Kitto, B. Ramm, L. Sitbon & D. Song - 2012 - Logic Journal of the IGPL 20 (2):445-457.
    Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. Quantum Technologies in Industry 4.0: Navigating the Ethical Frontier with Value-Sensitive Design.Steven Umbrello - 2024 - Procedia Computer Science 232:1654-1662.
    With the emergence of quantum technologies such as quantum computing, quantum communications, and quantum sensing, new potential has emerged for smart manufacturing and Industry 4.0. These technologies, however, present ethical concerns that must be addressed in order to ensure they are developed and used responsibly. This article outlines some of the ethical challenges that quantum technologies may raise for Industry 4.0 and presents the value sensitive design methodology as a strategy for ethics-by-design of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Against Quantum Indeterminacy.David Glick - 2017 - Thought: A Journal of Philosophy 6 (3):204-213.
    A growing literature is premised on the claim that quantum mechanics provides evidence for metaphysical indeterminacy. But does it? None of the currently fashionable realist interpretations involve fundamental indeterminacy and the ‘standard interpretation’, to the extent that it can be made out, doesn't require indeterminacy either.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  28.  70
    Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Matteo Morganti & Claudio Calosi - 2021 - British Journal for the Philosophy of Science 72 (3):865-891.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  29. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Quantum Mechanics and Intentionality.Godehard Brüntrup - 2014 - In Antonella Corradini & Uwe Meixner (eds.), Quantum Physics Meets the Philosophy of Mind: New Essays on the Mind-Body Relation in Quantum-Theoretical Perspective. Boston: De Gruyter. pp. 35-49.
    An essay on the connection between the mind-body-problem and quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  32. Quantum Theories of Consciousness.Paavo Pylkkänen - 2018 - In Rocco J. Gennaro (ed.), The Routledge Handbook of Consciousness. New York, NY, USA: pp. 216-231.
    This paper provides a brief introduction to quantum theory and the proceeds to discuss the different ways in which the relationship between quantum theory and mind/consciousness is seen in some of the main alternative interpretations of quantum theory namely by Bohr; von Neumann; Penrose: Everett; and Bohm and Hiley. It briefly considers how qualia might be explained in a quantum framework, and makes a connection to research on quantum biology, quantum cognition and quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Quantum Indeterminism, Free Will, and Self-Causation.Marco Masi - 2023 - Journal of Consciousness Studies 30 (5-6):32–56.
    A view that emancipates free will by means of quantum indeterminism is frequently rejected based on arguments pointing out its incompatibility with what we know about quantum physics. However, if one carefully examines what classical physical causal determinism and quantum indeterminism are according to physics, it becomes clear what they really imply–and, especially, what they do not imply–for agent-causation theories. Here, we will make necessary conceptual clarifications on some aspects of physical determinism and indeterminism, review some of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  62
    Concatenated Quantum Gravity papers 2.Paul Merriam & M. A. Z. Habeeb - manuscript
    The first purpose of this series of articles is to introduce case studies on how current AI models can be used in the development of a possible theory of quantum gravity, their limitations, and the role the researcher has in steering the development in the right direction, even highlighting the errors, weaknesses and strengths of the whole process. -/- The second is to introduce the new Presentist Fragmentalist ontology as a framework and use it for developing theories of (...) gravity and speculate on achieving a TOE. We emphasize it is necessary for the researcher to check everything in these articles for themselves. While there are many good ideas in this series of papers, the AI is known to make even arithmetic and algebraic mistakes. -/- To select just five apparently good ideas, there is a causal interaction tensor Cαβγδ(F1, F2) that encodes the causal relationship and the strength of the (possibly non-local) interaction between two fragments of reality (formed by each quantum system). There is a quantitative prediction for a testable table-top experiment. There is an explanation of how spacetime emerges from the fragments and their interactions. There is an explicit account of the double-slit experiment. And there is an explanation how this theory accommodates dark matter and dark energy simultaneously. -/- We explore ideas, equations they lead to, concrete calculations, and give corrections along the way. While these are generally morally right within this framework they must be checked by the researcher. Given this caveat, we believe we have made significant progress with the PF interpretation in developing a theory of quantum gravity and pointing out a possible path to a TOE. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  12
    Concatenated Quantum Gravity papers 4.Paul Merriam & M. A. Z. Habeeb - manuscript
    General Introduction to the PF interpretation of QM and quantum gravity The first purpose of this series of articles is to introduce case studies on how current AI models can be used in the development of a possible theory of quantum gravity, their limitations, and the role the researcher has in steering the development in the right direction, even highlighting the errors, weaknesses and strengths of the whole process. The second is to introduce the new Presentist Fragmentalist ontology (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  38. Quantum Mechanics: Observer and von Neumann Chain.Michele Caponigro - manuscript
    In this brief paper, we argue about the conceptual relationship between the role of observer in quantum mechanics and the von Neumann Chain. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  39. Quantum mereotopology.Barry Smith & Berit O. Brogaard - 2002 - Annals of Mathematics and Artificial Intelligence 36 (1):153-175.
    Mereotopology faces problems when its methods are extended to deal with time and change. We offer a new solution to these problems, based on a theory of partitions of reality which allows us to simulate (and also to generalize) aspects of set theory within a mereotopological framework. This theory is extended to a theory of coarse- and fine-grained histories (or finite sequences of partitions evolving over time), drawing on machinery developed within the framework of the so-called ‘consistent histories’ interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  40. Quantum Entanglement Undermines Structural Realism.Seungbae Park - 2022 - Metaphysica 23 (1):1-13.
    Quantum entanglement poses a challenge to the traditional metaphysical view that an extrinsic property of an object is determined by its intrinsic properties. So structural realists might be tempted to cite quantum entanglement as evidence for structural realism. I argue, however, that quantum entanglement undermines structural realism. If we classify two entangled electrons as a single system, we can say that their spin properties are intrinsic properties of the system, and that we can have knowledge about these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Fakeons, quantum gravity and the correspondence principle.Damiano Anselmi - manuscript
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Quantum Entanglement and Uncertainty Principle.Michele Caponigro - manuscript
    We argue about quantum entanglement and the uncertainty principle through the tomographic approach. In the end of paper, we infer some epistemological implications.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Quantum Entanglement vs Non-Locality.Michele Caponigro - manuscript
    In this brief paper, we argue about the relationship between quantum entanglement and non-locality.
    Download  
     
    Export citation  
     
    Bookmark  
  44. QUANTUM RESONANCE WITH THE MIND: A COMPARATIVE ANALYSIS OF BUDDHISM'S EIGHTH CONSCIOUSNESS, QUANTUM HOLOGRAPHY AND JUNG'S COLLECTIVE UNCONSCIOUS.David Leong - manuscript
    This interdisciplinary exploration discusses the intricate conceptual linkages among Buddhism’s Eighth State of Consciousness, Quantum Holography, and the Jungian Collective Unconscious. Central to this study is examining the Eighth Consciousness in Buddhist thought—a realm that transcends the conventional sensory and mental states to connect with a more universal and profound awareness. Drawing parallels, Quantum Holography posits that every part of the universe retains information about the whole, much like a hologram. This notion seemingly mirrors the Jungian concept of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on material (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46.  59
    The Quantum Complexity behind Quantum Reality.Graeme Robertson - manuscript
    The talk is called ‘The QUANTUM COMPLEXITY behind Quantum Reality’. It is divided into 3 parts: an outline of the essentials of quantum theory, a discussion of some glaring problems of interpretation, and my shocking philosophical conclusions.
    Download  
     
    Export citation  
     
    Bookmark  
  47. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Quantum Dysgenic Theory.Wilfried Schachter - manuscript
    The utilisation of quantum theories within social science and biology is often reasonably met with dubiety. It would be even more controversial should such theories be applied to concepts under the domain of eugenics. Nonetheless, this can open up a fresh and unique understanding of theories that are usually understood by their classical structure. We will provide quantum interpretations of dysgenics and dysgenic traits from different scopes and procedures. The way dysgenic traits are in a flux with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum Considerations in the Metaphysics of Levels.Ryan Miller - 2024? - Dissertation, Université de Genève
    Amie Thomasson challenges advocates of layered conceptions of reality to explain “how layers are distinguished” and “what holds them together” by “examining the world” (2014). One strategy for answering such questions is mereological, treating inter-layer relations as parthood relations, where layers exist whenever composition does, and the number of layers will be equivalent to the number of answers to Peter Van Inwagen’s Special Composition Question, while answers to his General Composition Question explain what holds the layers together (1987). Various answers (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
1 — 50 / 1000